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EXECUTIVE SUMMARY

PAVEMENT ACCEPTANCE TESTING:
RISK-CONTROLLED SAMPLING STRATEGY

Introduction

Acceptance testing is a critical aspect of the quality control and

quality assurance (QC/QA) program to ensure the reliable long-

term performance of pavement. A typical acceptance testing

specification includes acceptable quality characteristics (AQCs),

testing methods, number of samples, sample locations, and accep-

tance criteria. In the current practice, the Indiana Department of

Transportation (INDOT) accepts pavement by sampling and

testing materials with a predetermined very low frequency at

random locations. This leads to a significant problem: testing

results are not truly ‘‘representative’’ of the project because

sampling is not based on a statistical foundation nor on the

reliability concept. Therefore, there is a critical need for INDOT

to develop a guideline for the testing protocol from a system

perspective to minimize risk and ensure the reliability of material

acceptance testing.

This study developed a systematic guideline that addresses the

aforementioned problem with material acceptance testing in four

aspects: (1) identifying key material properties for testing,

(2) selecting sample locations, (3) designing acceptance criteria,

and (4) determining optimal sample size. Key material properties

that are critical to pavement long-term performance are identi-

fied by comparing them with sensitive material properties in

the Mechanistic-Empirical Pavement Design Guide (MEPDG).

A random sampling mechanism was devised based on two spatial

indices to control the spatial pattern of samples in order to

minimize the influence from spatial autocorrelation. Acceptance

criteria were proposed to control the agency’s risk at a desired

level given a specific sampling and testing strategy, based on which

optimal sample size is determined from a risk perspective. Cost

analysis approaches were developed to estimate the total cost of

acceptance testing by integrating the risk of making incorrect

decisions and to enable the determination of optimal sample size

from a cost perspective. Additionally, a quality control chart was

exploited as a complementary tool to ensure the consistency of

pavement quality. The results of this study were validated using

real data from INDOT projects, and a web tool that incorporates

the newly created methods in this study was developed to assist the

field pavement QA practice.

Findings

The main findings and recommendations to control the risk and

improve the reliability of pavement and soil acceptance testing are

summarized into four aspects, detailed as follows.

1. Findings and recommendations related to key material

properties.

N Ten hot mix asphalt (HMA) properties, 10 Portland

cement concrete pavement (PCCP) properties, and 9 soil

properties have been identified to be very important to

the pavement performance, among which 5 in HMA,

4 in PCCP, and 6 in soil are not tested in the current

INDOT practice. Most of the missing items in PCCP

and HMA do not have certified testing standards or are

difficult and not warranted in laboratory testing. They

can be substituted by default design value.

N It is recommended that (1) HMA thickness be tested and

measured directly rather than being estimated, consider-

ing its effect on pavement performance, and (2) a samp-

ling and testing protocol be established for key material

properties of soil that are currently not tested.

2. Findings and recommendations related to random sampling.

N ITM 802-based sampling leads to ‘‘gaps’’—areas that

will never be tested due to the limited random numbers

in the published table. For earthwork, gap areas can

receive insufficient compaction without being caught.

For pavement, although gap areas are not large enough

to accommodate a whole truckload, they lead to lower

probabilities for certain trucks to be tested, compared

with the true random sampling process. Such discre-

pancy results in a lower risk for contractors to

manipulate these trucks, and a higher risk for INDOT

to accept inferior materials. Therefore, the ITM 802-

based sampling is less reliable than the true random

sampling process that generates random numbers in real

time.

N Material properties are spatially auto-correlated.

Therefore, the sample spatial pattern must be controlled

to avoid spatial clustering and ensure the effectiveness

of random sampling. Two spatial pattern indices, i.e.,

nearest neighbor index (NNI) and coefficient of

variance (CV), are proposed for this purpose. NNI

assesses the degree of spatial dispersion and is recom-

mended to serve as the primary metrics. CV measures

the variability of sample locations and is recommended

to serve as the secondary metrics.

N It is recommended to (1) use a real-time random number

generator to determine sample locations, and (2) control

the spatial pattern indices sample locations to ensure

that the sample locations are spatially distributed and

truly representative of the project.

3. Findings and recommendations related to acceptance

criteria.

N The current acceptance methods based on either percent

within limit (PWL) or sample mean at INDOT do not

achieve the desired level of risk control.

N For pavement acceptance, the newly proposed numer-

ical M-method and Spk-method incorporate sample

variance and treat statistical measures of samples as

random variables. They are capable of controlling the

risk at a desired level and achieving higher testing power

compared to the current practice at INDOT.

N The numerical M-method is suitable for all scenarios

and is recommended to replace the current practice,

while Spk-method can be applied when the sample size is

relatively large to simplify the computation.

N For the soil compaction acceptance, a simulation

approach is proposed to assess INDOT’s risk. It is

recommended to conduct the simulation to examine the

risk once a sampling strategy is determined, and then

make a corresponding adjustment to the sampling

strategy according to the desired risk.

N Plotting QA data on a QC chart helps identify out-of-

control process at both project and lot levels. It is

recommended that a QC chart be used as an additional

quality assurance tool to supplement the numerical

M-method.



4. Findings and recommendations related to optimal sample

size.

N The optimal sample size for pavement acceptance testing

can be determined to satisfy the risk expectation of both

agency and contractor using the proposed numerical

M-method and Spk-method. The optimal sample size for

soil acceptance can be determined as the smallest value

that satisfies the agency’s desired risk level using the

proposed simulation approach.

N Two cost analysis methods have been devised to

determine the optimal sample size by minimizing the

total cost of acceptance testing, one for accept/reject

decision only and the other for pay factor decisions.

Implementation

The newly developed methods and corresponding results in this

study have been validated using real data from INDOT projects.

For practical implementation, a web tool that incorporates the

newly created methods in this study has been developed based on

R Shiny. It is an effective tool to facilitate the pavement and soil

QA practice for the INDOT engineers and has the ability to select

random samples, control the agency’s risk, and determine optimal

sample sizes for both pavement and soil acceptance testing.

The web tool consists of seven separate tabs that correspond

to different tasks in this study. Tabs 1 and 2 generate random

locations and control their spatial pattern for the random

sampling in both pavement and soil. Tabs 3 and 4 control the

agency’s risk of making incorrect acceptance/rejection decisions

and calculate the confidence interval of PWL given a specific

strategy for pavement acceptance testing. Tab 5 estimates the

agency’s risk of not identifying defective material and determines

the optimal sample size for soil acceptance testing. Tabs 6 and

7 determine the optimal sample size for pavement acceptance

testing from both a risk and a cost perspective.

A phased implementation is suggested as follows:

1. Set up R Shiny website to implement the web tool.

2. Tool rollout and pilot testing by phases.

N Phase I: field crew adopt the random number generator

tool to locate sample location.

N Phase II: field crew and material engineers use the risk

assessment tool to determine the probability of accept-

ing inferior products given the testing results.

N Phase III: engineers use the web tool to determine the

optimal sample size.

A clear understanding of the technical principles and a set

of skills are necessary to use the web tool and interpret the results.

As such, training for INDOT staff is recommended.
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1. INTRODUCTION

1.1 Background

Acceptance testing is a critical aspect of the quality
control and quality assurance (QC/QA) program to
ensure the pavement quality. A typical acceptance testing
specification includes acceptable quality characteristics
(AQCs), testing methods, number of samples, sample
locations, and acceptance criteria. Comparing the testing
results to the predefined acceptance criteria, an engineer
decides whether or not to accept the pavement, with or
without penalty or bonus. Since the quality (central ten-
dency and consistency) of pavement material properties
is critical to long-term pavement performance, it is impor-
tant that the state departments of transportation (DOTs)
have reliable acceptance testing procedures to ensure that
the samples and their testing results truly represent the
whole product.

1.2 Problem Statement

In the current practice, the Indiana Department of
Transportation (INDOT) accepts pavement by sam-
pling and testing materials with a predetermined, very
low frequency at random locations. For instance, for
the US 50 project, (1) on 8/26/2015, only two dynamic
cone penetration testing (DCPT) samples clustered in
the south-west corner were taken for an entire area
of approximately 47,600 ft2 (see Figure 1.1a), and (2) on
9/25/2015, only four DCPT samples at two locations
(two at each location) were taken for an entire area of
approximately 138,000 ft2 (see Figure 1.1b). Sparse
samples taken at point locations are assumed to truly
represent the entire area, leading to the significant pro-
blem: testing results are NOT truly ‘‘representative’’
of the material properties in a project because sampling
is based NEITHER on a statistical base NOR on the
reliability concept.

Adding more samples and testing locations and
distributing them throughout the entire area could make
the testing results more representative. The question
becomes how many locations to add and where should
they be. To answer this question, we must address the
sampling frequency and testing interval requirements
based on the following:

N The reliability concept—the consistency in measuring
pavement and the associated risk of accepting non-
consistent/inferior pavement. Low quality pavement is
always associated with premature failures and requires
excessive and expensive repairs.

N Considering the pavement as a system that is composed
of soil/earthwork (sub-base), base course(s), and surface
course. Any inferior component could lead to premature
failures.

N Treating the calculated average and standard deviation
of samples as statistical variants to incorporate the under-
lying randomness in to the process.

Therefore, there is a need to develop a guideline on
the testing protocol from a system’s perspective for
INDOT to minimize the risk of premature pavement
failure due to the lack of materials testing and ins-
pection interval.

1.3 Overall Objective and Work Plan

The overall objective of this project is to enhance
pavement quality by improving the materials testing
and quality assurance process to (1) ensure testing
results are representative of the composing layers of
pavement and reflective of the pavement consistency,
and (2) minimize INDOT’s risk on accepting low qua-
lity pavement.

To achieve the ultimate goal, the following seven
specific tasks are studied in this project. Figure 1.2 illu-
strates the overview of the work plan and how indivi-
dual tasks work together to achieve the objective.

1. Identify key material properties to pavement long term
performance

2. Assess the spatial pattern of sample locations
3. Determine the risk for specific testing strategies
4. Determine the optimal testing strategy for a given level of

risk
5. Adjust testing strategy based on historical performance
6. Cost analysis
7. Validation and case studies

1.4 Expected Benefits and Deliverables

This project is expected to provide a technical under-
standing of risk-based pavement acceptance testing for

Figure 1.1 Examples of material testing with low frequency.
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Figure 1.2 Overview of the work plan.

INDOT engineers in terms of key material properties,
random sampling (including sample location and sam-
ple size), and the risk associated with the acceptance
testing. The findings of this project allow INDOT to
ensure the representativeness of acceptance testing and
minimize its risk in accepting low-quality pavement.

Six deliverables are: (1) a synthesis study regarding
the key material properties and construction quality
measures that significantly affect pavement long term
performance; (2) a statistical analysis procedure for
INDOT engineers to calculate the risks associated with
pavement given specific testing frequencies and spatial
intervals; (3) an analysis procedure for INDOT engi-
neers to determine the appropriate testing intervals and
frequencies given a specific level of risk; (4) a cost and
benefit analysis procedure for INDOT engineers to opti-
mize the testing procedures and intervals; (5) a guide-
line on interpreting quality control charts and taking
appropriate actions; and (6) a web-based tool that incor-
porates the newly created methods to assist the field
pavement QA practice.

2. KEY MATERIAL PROPERTIES TO PAVEMENT
LONG-TERM PERFORMANCE

2.1 Introduction

The long-term performance of pavement depends on
the material properties to a large extent. The Mechanistic-
Empirical Pavement Design Guide (MEPDG) (AASHTO,
2008) provides a theoretical base for relating the pave-
ment long-term performance to material properties:
different distresses such as cracking, rutting, fault-
ing, and smoothness are predicted according to the

input material parameters for both flexible and rigid
pavements.

In the current practice, INDOT specification (INDOT,
2016) and material testing manual (INDOT Office of
Materials Management, 2015) specify testing items for
different types of pavement such as Portland cement
concrete pavement (PCCP) and hot mix asphalt
(HMA), as well as earthwork. However, the develop-
ment of INDOT material testing specification was
not based on MEPDG, which means the impact of
material properties on the pavement long-term perfor-
mance was not taken into account when selecting
testing items. Two critical questions have arisen. First,
what are the key material properties to the long-term
performance of pavement? Second, does INDOT test all
key items in their current acceptance testing? This chapter
addresses these two problems by comparing INDOT
testing items with key material inputs in MEPDG, to
which the predicted pavement performance is sensitive.

2.2 Identification of Key Material Properties in MEPDG

In this study, the identification of key material
properties is based on the work of Schwartz, Li, Kim,
Ceylan, & Gopalakrishnan (2011), who evaluated the
sensitivity of the pavement performance predicted in
MEPDG to the change of material properties. In their
study, the performance of HMA was captured by five
types of distresses: longitudinal cracking, alligator
cracking, asphalt concrete (AC) rutting, total rutting,
and international roughness index (IRI). The perfor-
mance of PCCP was characterized by faulting, trans-
verse cracking, and IRI.

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/08



TABLE 2.1
Number of key properties for different material types.

Material group HMA PCCP Soil

Hypersensitive (NSI . 5)

Very sensitive (1 , NSI , 5)

Sensitive (0.1 , NSI , 5)

Total number of key properties

2

4

4

10

0

8

2

10 9

Note: The sensitivity level of one property varies with respect to

distress types, and this table lists the highest sensitivity level of the

property in each material type, Tables 2.2, 2.3, and 2.4 show the detail

categories.

0

3

6

The sensitivity of the predicted performance is quan-
tified using normalized sensitivity index (NSI), which
represents the percentage change of predicted distress
relative to the design limit due to the percentage change
in the material property. Based on NSI, the material
properties are divided into four groups: hypersensitive
(NSI . 5), very sensitive (1 , NSI , 5), sensitive (0.1
, NSI , 1), and non-sensitive (NSI , 0.1). In this study,
material properties in the hypersensitive, very sensitive,
and sensitive categories are considered as key material
properties. Table 2.1 lists the number of key properties
for each material type (i.e., HMA, PCCP, and soil).

2.3 Comparison with INDOT Testing Items

The key material properties are grouped by the type
of material (e.g., HMA, PCCP, soil) and compared with
material testing items extracted from the INDOT speci-
fication (INDOT, 2016; INDOT Office of Materials
Management, 2015) (see Tables 2.2, 2.3, and 2.4).

2.4 Findings and Observations

In Tables 2.2, 2.3, and 2.4, the key material proper-
ties that are not tested in the current INDOT practice
are highlighted, 5 in HMA, 4 in PCCP, and 6 in soil.
Possible reasons for the discrepancy are grouped and
discussed as follows.

N No current AASHTO certified standards are available—

surface shortwave absorptivity for both HMA and

PCCP. MEPDG provides default design value.

N Laboratory testing is difficult and sometimes not

warranted—Poisson’s ratio for HMA, PCCP, and soil.

Using typical values for analysis is considered satisfac-

tory according to MEPDG (AASHTO, 2008).

N No description in INDOT specification—heat capacity

for HMA, coefficient of thermal expansion for PCCP,

thermal conductivity for HMA and PCCP, and soil

properties including seasonally adjusted resilient mod-

ulus, base erodibility, parameters to define the soil water

characteristic curve, thickness and loss of friction. Among

these factors, MEPDG provides default values for the

properties of HMA and PCCP, but soil properties are

supposed to be tested in the laboratory.

N Not tested in INDOT practice—thickness of HMA. In

INDOT’s practice, it is estimated using the quantity of

the HMA.

It is recommended that (1) HMA thickness should be
tested and measured directly rather than being esti-
mated, considering its effect on pavement performance,
and (2) a sampling and testing protocol shall be estab-
lished for key material properties of soil that are cur-
rently not tested, i.e., resilient modulus, Poisson’s ratio,
base erodibility, parameters to define the soil water
characteristic curve, thickness, and loss of friction.

TABLE 2.2
Comparison of MEPDG and INDOT specification—key HMA material properties.

Material properties

MEPDG sensitivity analysis

Comparison with INDOT

Longitudinal

cracking Alligator cracking AC rutting Total rutting IRI

Time-temperature dependent

dynamic modulus (E*)

HS HS HS HS HS (air void content,

asphalt mixture)

Poisson’s ratio VS VS VS VS S N

Surface shortwave absorptivity VS VS VS VS S N

Thermal conductivity S S S – – N

Heat capacity S S S S – N

Total unit weight S S S S – Y

Asphalt binder content VS VS – – S Y

Asphalt binder grade S S S S – Y

Thickness HS HS VS VS – N

Air voids VS VS – – S Y

Notes: HS, hypersensitive; VS, very sensitive; S, sensitive.

In the last column, ‘‘Y’’ indicates that the corresponding item is tested in INDOT’s practice; ‘‘N’’ indicates that the item is not tested in INDOT’s

practice; ‘‘()’’ indicates the item is not directly tested, but can be derived from the testing items enclosed in the parentheses.

Boldface indicates the key material properties not tested in current INDOT practice.
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TABLE 2.3
Comparison of MEPDG and INDOT specification—key PCCP material properties.

Inputs

Sensitivity analysis

Comparison with INDOTFaulting Transverse cracking IRI

Static modulus of elasticity (E)

Poisson’s ratio

Unit weight

Coefficient of thermal expansion

Modulus of rupture

Cement content

Water-to-cement (w/c) ratio

Surface shortwave absorptivity

Thermal conductivity

Layer thickness

S

S

VS

VS

S

S

S

S

S

S

VS

S

VS

VS

VS

S

VS

VS

VS

VS

S

S

VS

VS

S

S

S

S

S

S

(flexural strength)

N

Y

N

(flexural strength)

Y

Y

N

N

Y

Note: HS, hypersensitive; VS, very sensitive; S, sensitive.

Boldface indicates the key material properties not tested in current INDOT practice.

TABLE 2.4
Comparison of MEPDG and INDOT specification—key soil material properties.

Inputs

Sensitivity analysis

Comparison with

INDOT

HMA PCCP

Longitudinal

cracking

Alligator

cracking AC rutting

Total

rutting IRI Faulting

Transverse

cracking IRI

Resilient modulus (Mr) VS VS S S S S S S N

Poisson’s ratio S S S – – – – – N

Base erodibility – – – – – S S S N

Plasticity index S S – – – – – – (liquid limit)

Effective grain sizes VS S S S S – – – INDOT has some

regulations

regarding

aggregates in

207, 904

Parameters to define the

soil water

characteristic curve

S S – – – – S – N

Liquid limit S S S – – – – – Y

Thickness VS VS S – – S S – N

Loss of friction – – – – – – S – N

Note: HS, hypersensitive; VS, very sensitive; S, sensitive.

Boldface indicates the key material properties not tested in current INDOT practice.

3. RANDOM SAMPLING

3.1 Introduction

In the current practice, INDOT follows ITM 802
(INDOT Office of Materials Management, 2019) and
uses a published table of random numbers to determine
the sample locations. The main concern is whether
using a published table allows guessing sample loca-
tions and manipulating the production correspond-
ingly, leading to inferior product that escapes QA.

3.1.1 Random Sampling for Soil

In its current QA practice for soil, INDOT deter-
mines the quality of soil compaction by conducting
dynamic cone penetrometer test (DCPT) at three ran-
dom locations (selected in accordance with ITM 802)

for every 2,000 cubic yards of compacted soil (INDOT,
2016). Specifically, three pairs of random numbers are
retrieved from the ITM 802 table and multiplied by the
length and width of the covered area to determine the
longitudinal and offset positions. Figure 3.1a illustrates
the possible sample locations within an area in a
pavement project. Since the published table has a fixed
number (875) of pairs of random numbers, it is straight-
forward to determine which areas, such as the two large
‘‘gaps,’’ will never be sampled. Contrary, Figure 3.1b
illustrates the sample locations using a true random
number generator in real time. Increasing the number
of simulations will fill the blank spaces in Figure 3.1b,
but will not fill the gap areas in Figure 3.1a as the
sample locations repeat themselves among the 875 pairs
of random numbers. By determining such ‘‘gaps’’ in
advance, the compaction can focus on areas where
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Figure 3.1 Comparison between ITM 802-based sampling
and true random sampling.

samples might be taken and neglect the ‘‘gaps,’’ leading to
low consistency in the compaction and inferior quality in
the gap areas.

3.1.2 Random Sampling for Pavement

For pavement testing, either HMA or PCCP, the
sampling locations are also determined by selecting num-
ber pairs in the random number table published in ITM
802, leading to similar ‘‘gaps’’ shown in Figure 3.1a. In
comparison to earthwork where the compaction is
directly performed on the in-situ soil, the pavement is
usually constructed using materials delivered by trucks.
The main concern is whether the gaps are large enough
to be covered by one truck load. If so, the corresponding
truck(s) will never be tested and theoretically, inferior
materials can be used without being tested. Further-
more, with finite and predetermined random numbers
listed in the ITM 802 published table, the effectiveness
of such sampling protocol needs to be carefully eval-
uated by comparing it with the true random sampling
using random number generated from uniform distri-
bution in real time.

3.2 Evaluation of the Random Sampling Practice

Three simulation cases were conducted to evaluate
the effectiveness of ITM 802-based sampling. Case 1
aims at determining if a gap area is larger than the size
covered by one truckload. If so, that specific truck will
never be tested, making it possible to manipulate the
materials without being detected. Case 2 compares the
ITM 802 sampling process to the true random sampling
(using random numbers generated in real time) in the

aspect of the probability for each truck to be tested.
Case 3 further examines the effectiveness of ITM 802-
based sampling in comparison to the true random sam-
pling in terms of the probability of detecting inferior
materials.

All three simulation cases assume an HMA pave-
ment sublot of 1,000 tons, pavement mixture of 165 lb/
yd2 in density, and pavement width of 12 ft. The typical
truckload, 20 tons, is assumed and the sublot involves
50 truckloads.

3.2.1 Case Study 1

Figure 3.2 illustrates the sample locations after 10,000
simulations using the ITM-802 table. The largest gap is
identified to have a gap length of 81.81 ft. The gap area
is calculated to be 982 square feet (by multiplying this
gap length with the pavement width (12 ft)). This area
corresponds to 9 tons in quantity (12 ft * 81.81 ft / 9 ft2

per yd2 * 165 lb/yd2 5 18,000 lb 5 9 tons), smaller than
one truckload (20 t). Therefore, it is infeasible to use a
whole truckload of inferior material with zero chance of
being tested.

3.2.2 Case Study 2

In Case Study 2, the probability for each truck to
be tested using ITM 802-based sampling (Figure 3.3a)
is compared to using the true random sampling
(Figure 3.3b). Figure 3.3b illustrates that each truck
has a 0.02 probability of being tested if the sampling
process is truly random. Figure 3.3a, however, illus-
trates that in the current random sampling practice

Figure 3.2 Largest gap area from ITM 802-based sampling.
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Figure 3.3 Probability of being tested for each truck.

Figure 3.4 Probability of detecting at least one truck with inferior materials.

following ITM 802, the probability of being tested
varies significantly among the trucks. Truck 15 and
Truck 16 have distinguishable low probabilities of being
selected. The results reveal that in ITM 802-based samp-
ling, although every truck has a chance to be tested, the
probability for some of them is low, and the result is
not as level as the result from the true random samp-
ling process. This discrepancy leads to low risk for con-
tractors to manipulate certain trucks.

3.2.3 Case Study 3

In Case Study 3, the efficacy of the ITM-based
sampling was compared with true random sampling
in the aspect of detecting inferior materials. Assuming
there are 1–5 random trucks with inferior materials, the
probability of detecting at least one such truck was
computed for both approaches. Figure 3.4 illustrates
the results. While the average probabilities of two methods
are almost the same, the ITM 802 approach leads to
much larger standard deviations, indicating a lower
reliability.

3.3 Findings, Recommendations, and Implementation

The main findings are as follows.

N ITM 802-based sampling leads to ‘‘gaps’’—areas that will
never be tested due to the limited random numbers in the
published table.

N For earthwork, gap areas can receive insufficient com-
paction without being caught.

N For pavement, although gap areas are not large enough
to accommodate a whole truckload, they lead to lower
probabilities for certain trucks to be tested, compared
with the true random sampling process. Such discrepancy
results in a lower risk for contractors to manipulate these
trucks, and a higher risk for INDOT to accept inferior
materials.

N The ITM 802-based sampling is less reliable than the true
random sampling with random number generated from
uniform distribution in real time.

Therefore, it is recommended to use a real-time random
number generator instead of a published random number
table to perform the sampling for both earthwork and
pavement. In order to implement this recommenda-
tion, a web-based tool has been developed to assist

6 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/08



field engineers in determining sampling locations in
real time. Section 10.1 and 10.2 provide details.

4. SPATIAL PATTERN ANALYSIS

4.1 Introduction

Random sampling is applied in the acceptance
testing with the expectation that the random samples
are representative of the population. An inherent assum-
ption is that samples are independent, which, however,
is not realistic in pavement and earthwork. For soil,
Tobler’s First Law of Geography—everything is related
to everything else, but near things are more related than
distant things—applies. For pavement, materials are
delivered by trucks and paved continuously. Conse-
quently, pavement at neighboring locations is expected
to have similar level of quality. This scenario of nearby
locations showing similar level of quality, defined as
spatial autocorrelation, leads to a key challenge in QA:
if samples are close to each other, the effective number
of samples is reduced even though the sample locations
are randomly chosen. As a result, samples are biased,
no longer truly representative of the population. This
chapter aims at developing a method to minimize the
impact of spatial autocorrelation by spatially spreading
the sample locations.

4.2 Spatial Autocorrelation in Soil Compaction

As an illustration, Figure 4.1a shows the soil com-
paction meter value (CMV), an indicator of soil stiffness
measured via intelligent compaction, for an INDOT
project. Intuitively, the higher values (light cells) tend
to cluster in the upper area and lower values (dark
cells) fall in the lower area. Moran’s I is computed to be
0.261 by taking into consideration of both feature loca-
tions and feature values, from a statistical perspective.
Equation 4.1 illustrates the calculation of Moran’s I.
Assuming the entire area is divided into N cells, xi

represents the CMV for cell i, and x� is the average
CMV for all cells. Wi,j is the spatial weight between cells
i and j, and typically, the closer two cells are, the larger

the weight is. Moran’s I is the ratio of deviation values
for all neighboring features (numerator) to the sum of
individual deviations (denominator), normalized by the
aggregation of all spatial weights (W) (ArcGIS, 2017).
Considering that the reference range for Moran’s I is
[-1, 1], positive values indicating spatial cluster, negative
value indicating spatial dispersion, and near zero values
indicating spatially random distribution. The Moran’s I
for the soil signals the CMV values are spatially clustered.
Figure 4.1b illustrates the corresponding clusters.

I~
N

W

P
i

P
j wi j(xi{�x)(xj{�x)

i(xi{�x)2
ðEquation 4:1ÞP

4.3 Spatial Pattern Index

Two spatial indices, nearest neighbor index (NNI)
and coefficient of variation (CV), are proposed in this
study to evaluate the spatial pattern of samples based
on their distances to each other. NNI measures the
degree of spatial dispersion based on the minimum of
inter-feature distances (Chou, 1997). CV measures the
co-variation among the samples.

In this study, given a set of samples NNI calculation
follows the following steps.

1. The nearest distance of a specific sample location, di, is
determined as the Euclidean distance between this sam-
ple location and its nearest neighbor.

2. The average nearest distance of the set of samples, Ad, is
calculated as the average of the nearest distances of all

sample locations as Ad~(
Xn

di)=n, where di is the dis-
i~1

tance from sample i to its nearest neighbor, and n is the
sample size.

3. Since a pavement segment or a soil compaction path is
linear (i.e., the length is much larger than the width), we
focus on spatial dispersion in the longitudinal dimension
and simplify the statistically expected value of the average
nearest distance, Ed, as Ed5L / n, where L is the lot/area

length.

4. The nearest neighbor index (NNI) is calculated as NNI5

Ad / Ed. By definition, the samples are spatially clustered

Figure 4.1 Spatial pattern analysis for soil CMV.
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Figure 4.2 Illustration of scenarios with varying NNI and CV.

when NNI is less than one and spatially dispersed when
NNI is larger than one.

In addition, it is desirable that the samples cover
the entire lot to the largest extent, i.e., samples should
‘‘evenly’’ spread throughout the area. This is achieved
by minimizing the variability among all nearest dis-
tances. In this study, CV is used to measure the varia-
bility. It is denoted as CV5Std / Ad, where Std is the
standard deviation of nearest distances, computed as

Std~

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

(d {Ad)2
i =n

i~1

ffi
. Under the ideal scenario, where

the n samples are exactly evenly distributed, CV is 0.
NNI and CV work together to assure the spatial

distribution of sample locations. Figure 4.2 illustrates
six scenarios with varying NNI and CV. Scenarios (a),
(d), (e), and (f) are randomly generated and in scenarios
(b) and (c) the sample locations are manually selected.
Intuitively, scenario (f) has the best spatial pattern. The
large NNI and small CV values confirm the sample
locations spread out almost evenly. Scenario (b) shows
that the points are clustered in three groups with a small
NNI (i.e., 0.25), but a perfect CV (i.e., 0). Scenarios (a),
(c), (d), and (e) all have similar large NNI values, but
differ in CV. Correspondingly, the sample locations are
generally disbursed with some local clustering. The
general trends indicate that NNI and CV shall both be
used to assure the spatial distribution of sample loca-
tions—NNI can serve as the primary index and CV can
serve as the supplementary index.

In implementation, both NNI and CV are incorpo-
rated in the web tool (Section 10.1 and 10.2) developed
in this study by constraining them in reference ranges to
prevent the spatial clustering and high variability in
sample locations. The reference ranges vary with lot or
area size and sample size and are set based on 1,000 simu-
lations. Specifically, 1,000 simulations of the required
number of samples are performed, leading to 1,000 NNIs
and 1,000 CVs. These results are ordered ascendingly.
The range of the 95% largest NNIs and the range of

the 95% smallest CVs are the reference ranges to con-
straint both NNI and CV. The web tool will continue
to generate sets of required sample locations till they
fall in the reference ranges for both NNI and CV.

4.4 Findings and Recommendation

The key findings and recommendations are as follows.

N The material properties are spatially auto-correlated.

Therefore, sample spatial pattern needs to be evaluated

and controlled to avoid spatial clustering and ensure the

effectiveness of random sampling.

N Both NNI and CV shall be used for evaluating the spatial

pattern of sample locations. NNI assesses the degree of

spatial dispersion and is recommended to serve as the

primary metrics. CV measures the variability of sample

locations and is recommended to serve as the secondary

metrics.

N In the implementation through the web tool, both NNI

and CV are constrained in the 95% reference ranges to

ensure the sample locations are spatially distributed and

truly representative of the population.

5. RISK ASSESSMENT FOR GIVEN TESTING
STRATEGIES

5.1 Introduction

In the current pavement QA practice at INDOT,
a predetermined number of samples are taken at
random locations following ITM-802 and tested, and
statistical measures such as mean, standard deviation,
and percent within limits (PWL) are calculated and
compared to acceptance criteria to determine whether
to accept or reject the product. For PCCP pavement,
sample mean is the statistical measure and for HMA
pavement, sample PWL (calculated based on sample
mean and standard deviation) is the statistical measure.

Unfortunately, sample statistical measures are just
estimates of the correspondingly population statistical
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measures and they vary from one set of samples to
another set of samples. Discrepancies between sample
and population measures are inevitable. Thus, it is
critical to incorporate such discrepancies and sampling
variability into the decision-making process to deter-
mine the risk in accepting inferior product given a set of
samples. This is achieved by treating the sample statis-
tical measures as statistical variables (e.g., the popula-
tion PWL is not the same as the sample PWL; rather,
its boundaries at certain confidence level are estimated
based on a critical value). By comparing the sample
PWL with the critical value while making the accep-
tance decision, the risk can be controlled within an
acceptable level. Two statistical methods: M-method
and Spk-method, were exploited to derive the critical
value and make corresponding decisions. Both methods
were compared to the current PWL and mean methods
at INDOT to reveal the difference in risk. Note in this
section, risk is denoted by testing power—the prob-
ability of making correct acceptance decision: accept
the product that should be accepted and reject the
product that should be rejected. Calculation-wise, risk
equals to 1 – testing power.

For soil compaction acceptance, the current QA
practice is different. DCP value of individual sample,
instead of the quality measures computed from a group
of samples, is used to make acceptance decision. When
a deficiency is identified at a random location, the con-
tractor is required to investigate and correct this defici-
ency (INDOT, 2014). In such a scenario, the testing
power is defined as the probability of catching at least
one random sample for defective soil. Risk is still calcu-
lated as 1 – testing power. This allows INDOT to deter-
mine their risk—failure in detecting an inferior area—for
a given testing strategy.

5.2 Risk Assessment Methods

Since PWL measures the proportion of the pavement
that falls within the specification limits considering
both material average property and the variability, it
is chosen as the statistical measure in this study and
statistical hypothesis testing procedures that incorpo-
rate sampling variability are developed correspondingly
to make acceptance decisions and determine the risk.
We propose two estimates for PWL, one based on frac-
tion defective p and the other based on yield index Spk,
to perform statistical hypothesis testing. These mea-
surements are derived under the normality assumption,
following the practice of most state DOTs.

5.2.1 PWL Estimate Based on Fraction Defective

The first approach is based on fraction defective.
It is a variant of the classic M-method (Lieberman
& Resnikoff, 1955), a commonly adopted method in
statistical quality control. The fraction defective refers
to the fraction that is outside of acceptable limit and
it is calculated as p51–PWL. When estimated from a
group of samples, it is denoted as p̂; p̂ is compared with

a critical value M that is derived for a given quality
target (set as portion within limits) and confidence level.
If p̂ is smaller than the critical value M, the pavement
will be accepted. Otherwise, the pavement will be rej-
ected. For instance, if the confidence level is 90% and
the rejectable fraction defective p is 20% (the agency
will reject the pavement if p is larger than 20%), a cor-
responding critical value M can be derived. Assuming
p̂ is obtained from the pavement with rejectable quality
and is larger than M, we will reject the pavement with a
90% confidence—the risk of incorrectly accepting the
inferior product is 10%.

5.2.1.1 Mathematical Model. The statistical distri-
bution of the fraction defective is derived as follows.
Given a population that follows a normal distribution
N(m, s2), where m is population mean and s is the
population standard deviation, the fraction defective
p refers to the total proportion of the pavement that is
outside the lower specification limit (LSL) and upper
specification limit (USL) (see Equation 5.1).

p~P(XvLSL j m,s)zP(XwUSL j m,s) ðEquation 5:1Þ

By definition, p 5 1- PWL. Population p is unknown
and can only be estimated (as p̂) from samples of the
population. p̂ is a variable that follows specific statis-
tical distribution, illustrated in Equations 5.2–5.4,
where x1,…,xn are random samples from the population
with unknown mean and standard deviation, sample

mean is calculated as x�~
Xn

xi=n, sample standard
i~1

n
deviation is calculated as s~ (xi{x�)2=(n{1),

i~1

and B(x;n/2–1, n/2–1) is the

q
Bet

Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a probabili

ffiffiffiffiffiffiffiffiffiffiffiffi
ty den

ffiffiffiffiffiffiffiffiffi
sity

ffi

function (PDF) with parameters n/2–1 and n/2–1 for
p̂U and p̂L. The detailed derivation of p̂U and p̂L can be
found in Lieberman and Resnikoff (1955).

p̂~p̂Lzp̂U ðEquation 5:2Þ

p̂U~

ðmax(0;1
2
{1

2
USL{�x

s

ffiffi
n
p

n{1

0

B(x;
n

2
{1,

n

2
{1)dx

ðEquation 5:3Þ

p̂L~

ðmax(0;1
2
{1

2
�x{LSL

s

ffiffi
n
p

n{1

0

B(x;
n

2
{1,

n

2
{1)dx

ðEquation 5:4Þ

Knowing the statistical distribution of p̂ is important
because it is the base for determining the critical value
and performing hypothesis testing, and making accept/
reject decisions at a controlled risk level.

5.2.1.2 Critical Value M and Hypothesis Testing. For
pavement acceptance testing, there are two hypothe-
ses, null hypothesis H0 : p#c and alternative hypothesis
H1 : p.c, where c is the target value of fraction
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defective and is regulated in the specification. For
instance, if the rejectable quality level is 20% in the
specification, or c equals 0.2, the two hypotheses
become H0 : p#0.2 and H1 : p.0.2.

The fraction defective estimate p̂, calculated from a
set of random samples, is compared to a critical value
(its derivation is provided in the rest of this section) and
if the fraction defective estimate is larger, the null hypo-
thesis H0 is rejected and the alternative hypothesis H1 is
accepted. Otherwise, we fail to reject the null hypothesis
H0. Failure in rejecting the null hypothesis H0 means
there is not enough evidence to reject the null hypo-
thesis with the current samples; however, when more
samples are collected, we may be able to reject the null
hypothesis. Contrarily, rejecting hypothesis H0 means
the fraction defective is statistically larger than the
target and the pavement is rejected.

Since the sample fraction defective p̂ is a random
variable to estimate the population fraction defective,
a critical value M is required for hypothesis testing.
If p̂ƒM, we accept the null hypothesis at the specific
confidence level; that is, we accept the pavement with
the confidence of 1–a. The statistical meaning is that the
probability of the population fraction defective being
greater than the target value c is less than a. This critical
value M is determined by solving Equation 5.5, where
(m0,s0) is the population mean and standard deviation.

P(p̂vM jm0,s0)~P(p̂Uzp̂LvM j m0,s0)~1{a

ðEquation 5:5Þ

It is extremely difficult to derive the critical M value
using an analytical approach, which is recognized as a
drawback of the M-method. In this study, we developed
a two-step process as a practical approach to determin-
ing the critical value M, referred as numerical M-
method. Step 1 aims at converting the derivation of
the estimated fraction defective, p̂, into a statistically
computable format by substituting the random compo-
nents with computable components to facilitate Step 2
simulations. Step 2 aims at simulating the p̂ and deter-
mining the critical value using a Monte-Carlo app-
roach, which can consider all populations that satisfy
the target fraction defective instead of estimating from
samples and leads to more reliable results.

In Step 1, the inputs to the conversion process are
Equation 5.3 and Equation 5.4 that illustrate the deri-
vation for p̂U and p̂L. The random components ofpffiffi

n
ffi
(USL{X )=S and

p
n(X{LSL)=S in the equations

make the computation imp
variables follow non-cent

ffiffiffi
ossible. These two random

ral t distributions with deg-
rees of freedom n–1 and the non-centrality parameter

ncp1~
pffiffi

n
ffi
(USL{m0)=s0 and ncp2~

p
n(m0{LSL)=s0,

respectively. Due to the distributiona

ffiffiffi
l equivalencep
n(USL{X )d

of the non-central t distribution, i.e.,
S

)d
ncp {Z

p
n
ffiffiffi

(X{LSL ncp2z

ffiffi
Z

~ 1

ffi

x=(n{

is

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi and ~ ;where Z
1) S x=(n{1)

a standard

ffi
normal random variable and x is an inde-

pendent chi-square random variable

p
wit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h n–1

ffi
degrees of

freedom, they substitute the random components in
Equation 5.3 and Equation 5.4, leading to Equation 5.6
and Equation 5.7. These two new equations are the
outputs of Step 1. They mathematically describe the
computation of p̂U and p̂L.

p̂U~

ðmax(0, 1
2
{1

2

ncp1{Zffiffiffiffiffiffiffiffiffi
x=(n{1)
p 1

n�1
)

0

B(x;
n

2
{1,

n

2
{1)dx

ðEquation 5:6Þ

p̂L~

ðmax(0, 1
2
{1

2

ncp2zZffiffiffiffiffiffiffiffiffi
x=(n{1)
p 1

n�1
)

0

B(x;
n

2
{1,

n

2
{1)dx

ðEquation 5:7Þ

In Step 2, based on Equation 5.6 and Equation 5.7,
a Monte-Carlo simulation approach is developed to
determine the critical value M. The process is detailed as
follows.

1. Determine 20 pairs of (m0,j, s0,j) that corresponds to a
given target defective fraction c, where j51, …, 20. Note
that an infinite number of pairs of (m0, s0) can be found
to correspond to the same c as far as they satisfy P(X
vLSL j m0,s0)zP(XwUSL j m0,s0)~c, and this study
takes 20 pairs for the computation purpose. For example,
when LSL52.6, USL55.4, and c50.1, both m053.37,
s050.6 and m054.29, s050.8 satisfy the requirement
P(Xv2:6 j m0, s0)zP(Xw5:4 j m0,s0)~0:1. In this study,
these 20 pairs of (m0, s0) are determined through
numerical computation.

2. For each pair of (m0,j,s0,j),
For i51,…,B510000,

a. Select a random variable Zi,j from standard normal
distribution, and a random variable xi,j from chi-
square distribution with degree of freedom n-1. These
two random variables are used to compute the statis-
tical parameters in step b.

ncp1, j{Zi, j ncp2, jzZi, j
b. Compute qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi; j=(n{1)
ffi and qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi; j

ffi ; where
=(n{1)

ncp1,j~
pffiffi

n
ffi
(USL{m0, j)=s0,j and ncp2, j~

p

.

ffiffi
n

s0, j

c. Compute p̂ ~p̂ zp̂ .

ffi
(m0, j{LSL)=

i, j L,i, j U ,i,j

3. For the population with (m0, j, s0,j), 10,000 estimated
fraction defective p̂i, j result from Step 2, and the cri-
tical value for this population, Mj, is determined as the
p̂i, j that is larger than (1–a)6100% of all 10,000 p̂i, j .
It is equivalent to finding a value such that the pro-
bability of p̂i, j exceeding Mj equals a, as defined in Equa-
tion 5.5.

4. Since the true population mean and standard deviation
are unknown, these 20 pairs of (m0, j, s0,j) are used as an
approximation, leading to 20 different critical values, Mj.
For different pairs of (m0, j, s0,j), the tails of the histogram
of p̂ i,j are different, either symmetric or asymmetric. In
the risk calculation, it is desirable that the probability of
p̂ exceeding M is no larger than a when considering all
possible situations. Therefore, the largest value among
Mj is chosen as the critical value (i.e., M5max{M1,…,
M20}) to cover the most asymmetric cases.
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5.2.2 PWL Estimate Based on Yield Index

The second approach is based on yield index Spk. It
was devised by Boyles (1994) to assess the compatibility
of the process performance with the specification, and
has been successfully adopted to the QA/QC practice
in the manufacturing industry. The yield index Spk has
one-to-one correspondence to PWL, i.e., PWL52W

1 PW
(3Spk)–1, or Spk~ W{1 Lz1ð ). The estimate of Spk -

3 2
Ŝpk - from a group of samples, follows an asymp-

totically normal distribution. This normal distribution
affords the simplification of the hypothesis testing as a
standard one-tail Z-test.

5.2.2.1 Mathematical Model. Equation 5.8 shows the
mathematical definition of the yield index Spk, where m
and s are the population mean and standard deviation,
and W is the cumulative distribution function (CDF) of
the standard normal distribution.

Spk~
1

3
W{1 1

2
W

USL{m

s

� �
z

1

2
W

m{LSL

s

� ��
ðEquation 5:8Þ

�

Since m and s of the pavement population are
unknown, the Spk needs to be estimated from n samples
by substituting the m and s in Equation 5.8 with sample
mean x� and sample standard deviation s, denoted as

Ŝpk . Lee, Hung, Pearn, and Kueng (2002) and Pearn

and Cheng (2007) proved that Ŝpk is asymptotically

normally distributed with mean Spk and variance.
2

(a2zb2)=
n o

36n
� �
f(3Spk) Equations 5.9–5.11 illustrate

its probability density function.

fŜpk
(x)~

ffiffiffiffiffiffiffiffi
18n

p

r
f(3Spk)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2zb2
p exp {

18n½f(3Spk)�2

a2zb2
(x{Spk)2

"

ðEquation 5:9Þ

a~
1ffiffiffi
2
p USL{m

s
f

USL{m

s

� �
z

m{LSL

s
f

m{LSL

s

��
ðEquation 5:10Þ

b~f
USL{m

s

� �
zf

m{LSL

s

� �
ðEquation 5:11Þ

#

��

5.2.2.2 Hypothesis Testing. For pavement acceptance,
there are two hypotheses using Spk (Lee et al., 2002;
Pearn & Cheng, 2007), null hypothesis H0 : Spk$c and
alternative hypothesis H1 : Spk,c, where c is the target
value that is derived from the PWL in specification.
For instance, if the specification regulates the PWL for
acceptance is 0.9 or larger, the target value is calcula-

1 PWLz1
ted as c~ W{1

3
ð )~0:55. The two hypotheses

2
become H0 : Spk$0.55 and H1 : Spk,0.55. The testing

statistic T calculated using the yield index estimate Ŝpk,

is compared to a critical value (the derivation of testing
statistic and critical value is provided in the rest of this
section) and if the testing statistic is smaller, the null
hypothesis H0 is rejected and the alternative hypothesis
H1 is accepted. Otherwise, we fail to reject the null
hypothesis H0. Failure in rejecting the null hypothesis
H0 means there is not enough evidence to reject the null
hypothesis with the current samples; however, when more
samples are collected, we may be able to reject the null
hypothesis. Contrarily, rejecting hypothesis H0 means the
yield index is statistically smaller than the target and the
pavement is rejected.

Due to the asymptotically normal distribution of

Ŝpk, the hypothesis testing is simplified to be a stan-

dard Z-test, where the testing statistic is derived as

6(Ŝ Ŝpk{c) nf(3 pk)
T~ ^pffiffiffiffiffiffiffiffiffiffiffiffiffi ;where â and b are computed

â2

p
z

ffiffiffiffiffi
b̂2

ffi
from Equation 5.10

ffi
and Equation 5.11 by replacing

m and s with x� and s, respectively. The critical value (Z)
is computed from standard normal distribution. Figure
5.1 illustrates that given a specific confidence level 1-a,
Za is the lower a quantile of the standard normal
distribution. If T$Za, we fail to reject the null hypo-
thesis; that is, we accept the pavement with the con-
fidence of 1–a. The statistical meaning is that the
probability of the population yield index being smaller
than the target value is less than a.

5.2.3 Case Study

Air voids acceptance in HMA pavement is used as an
example to demonstrate the advantage of the proposed
methods in risk assessment by comparing them with
the current practice at INDOT. According to INDOT
specification for HMA (INDOT, 2016), the USL and
LSL for air voids (%) are 5.4 and 2.6 respectively, five
samples are taken per lot, and pavement with PWL
lower than 0.5 is regarded as failed material—the target
PWL is 0.5. It is assumed that the desirable risk level of
INDOT is 0.1 (a50.1). To evaluate the testing power of
different population, the population mean is set to vary
between 2 and 6, and the standard deviation is 0.6 or
1.2. To reveal the influence from sample size on the
risk, the sample size is set to be 5, 10, and 100.

Figure 5.2 illustrates the comparisons of the testing
power—the probability of rejecting failed materials
among INDOT’s current practice (black line), and
numerical M- (red line) and Spk-methods (blue dash
line), using numerical simulations (10,000 times). The
horizontal axis is the population mean (m) varying from
2 to 6. All diagrams are symmetrical, centered at m54
which is the average of USL and LSL and corresponds
to the largest PWL. The farther away m is from 4, the
smaller the population PWL is. The two vertical dash
lines represent the boundary of m. The left and right
range outside these two lines represent failed materials
that should be rejected, referred as rejectable regions.
The vertical axis is the testing power, or the probability

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/08 11



Figure 5.1 Hypothesis testing based on yield index.

Figure 5.2 Testing power of HMA air voids acceptance testing.

of rejecting the materials. The horizontal dash line
represents the testing power at 0.9. The desired out-
come is to control the risk of INDOT in accepting
rejectable materials to be 0.1 or less, which is equivalent
to achieving a larger-than-0.9 testing power in the reject-
able regions. In all charts, red lines represent the results
of numerical M-method, blue dash lines represent the
results of Spk-method, and black lines represent the
results of the current PWL method at INDOT.

In every chart, the performance curve of the numerical
M-method intersects with the boundary lines and the
0.9 testing power line at the same two points. The num-
erical M-method succeeded in rejecting failed materials
with a testing power is 0.9 in all scenarios. INDOT’s
risk of accepting failed materials is controlled to
be below 0.1. The performance curve of the current
PWL method intersects the two vertical boundary

lines around 0.6 testing power. The risk of INDOT in
accepting failed materials is 0.4 or larger and is larger
when the sample size is smaller. The Spk-method, in
general, aligns with the numerical M-method. However,
the risk controlled by Spk-method is slightly biased
from the target of 10% level when the sample size is
small (n55, 10) and standard deviation is large (s51.2).
The discrepancy stems from two reasons. First, the
theoretical foundation of hypothesis testing is the asym-

ptotically normal distribution of Ŝpk, which is slightly

deviated from its true distribution when the sample size
is smaller than 40 (Pearn, Lin, & Wang, 2004). Second,
the critical value is approximated using samples from a
specific population instead of considering different
populations as the numerical M-method does, which
may lower the robustness when the standard deviation
is large.
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Based on the results, we recommend to use numerical
M-method in all scenarios and use Spk-method when
the sample size is relatively large to simplify the compu-
tation. Overall, the numerical M-method is recom-
mended to replace the current PWL practice.

5.3 Risk Assessment for Soil Acceptance Testing

The decision process in accepting soil compaction
is different from pavement. In soil acceptance testing,
DCP value of individual samples, instead of the statis-
tical measures computed from a group of samples, is
used to make acceptance decisions. When a deficiency is
identified at one random location, the contractor needs
to investigate and correct this deficiency (INDOT,
2014). Therefore, the testing power for soil QA testing
is defined as the probability of detecting at least one
random samples from defective soil.

In this study, a simulation approach has been deve-
loped to assess the risk to INDOT in not catching failed
materials following the current practice. Figure 5.3 illu-
strates the overall process. Given a specific defective
rate (dRate), the percentage of defective soil, we divide
the entire area into 1,000 cells and randomly desig-
nate 1000 * dRate cells as defective ones. When taking
n random samples from these 1,000 cells for accep-
tance testing, if at least one of them is in a defec-
tive cell, we succeed in identifying the detective soil.
This process is repeated 1,000 times; the testing power
is calculated as (the number of successes / 1,000), the
probability of successfully identifying at least one
defective cell.

Figure 5.4 illustrates the testing power-defective
rate curves for sample sizes of 3 to 7. The horizontal

axis represents the defective rate of soil, varying
from 0% to 100%. The vertical axis represents the
testing power, the probability of detecting at least
one samples from the defective material. Two main
observations are as follows. First, for all sample sizes,
the testing power increases sharply as the defective
rate increases at the low end, but levels out once the
defective rate reaches 50%. Second, the testing power
increases as the sample size increases. These curves
allow the determination of the risk in accepting defec-
tive soil given a specific sample size and an estimated
soil defective rate. For instance, if the sample size is
three and the defective rate of the target area is expec-
ted to be around 25% according to the historical
performance of the contractor, the testing power is
60% and the risk is 40%. The probability of defective
soil escaping acceptance testing is 40%. These curves
also allow the determination of the appropriate
sample size if the risk is to be controlled at a specific
level. For instance, for the above example, if the risk
is to be controlled at 15%, the appropriate sample
size shall be 7. Thus, the chart in Figure 5.4 allows
INDOT to determine its risk at a given sample size
and the appropriate sample size at a given risk.
This simulation method has been validated using real
data, and details are in Section 9.3.

5.4 Findings and Recommendations

The main findings and recommendations are as
follows.

N The current acceptance testing methods at INDOT do

not achieve the desired level of risk control.

Figure 5.3 Workflow of testing power calculation and risk assessment for soil acceptance.
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Figure 5.4 Testing power-defective rate curves in soil
acceptance testing.

N The newly proposed numerical M-method and Spk-
method incorporate sample variance and treat statistical
measures of samples as random variables. They are
capable of controlling the risk at a desired level and
achieving higher testing power compared to the current
practice at INDOT.

N In general, the numerical M-method and Spk-method
aligns with each other. The numerical M-method is
suitable for all scenarios and is recommended to replace
the current practice, while Spk-method can be applied
when the sample size is relatively large to simplify the
computation.

N For the soil compaction acceptance, a simulation app-
roach is proposed to assess the risk of INDOT. It is
recommended to conduct the simulation to examine the
risk once a sampling strategy is determined, and then
make corresponding adjustment on the sampling strategy
according to the desired risk.

The proposed methods for pavement and soil accep-
tance have been implemented as two tabs in the newly
developed web tool, detailed in Section 10.3 and 10.5.
For pavement testing, INDOT engineers can estimate
their risk of accepting failed materials (1 – testing
power) using the proposed methods and compare the
new methods to INDOT’s current practice (PWL for
HMA and mean value for PCCP). The users can also
compare the testing power of different sample sizes by
changing the sample size in the input. For soil accep-
tance testing, INDOT engineers can compare their risk
in accepting defective soil work at different sample sizes
and determine the appropriate sample size to control
the risk at any desired level.

6. OPTIMAL SAMPLE SIZE

6.1 Introduction

A critical question in QA practice is the optimal
sample size for controlling the risk at a specific level. In
the previous section statistical methods were developed
to assess the risk given a sample size. The connection
between risk and sample size for both pavement and
soil has been established. This connection forms the
base to determine the optimal sample size to control
risk at a specific level, which is the aim of this chapter.

The risk for INDOT is defined as the probability of
accepting a product that is of rejectable quality level
(RQL); the risk for contractor is defined as the pro-
bability of a product that is of acceptable quality level
(AQL) being rejected. Since the acceptance testing for
pavement and soil is different, the determination of the
optimal sample size for pavement and soil is treated
separately in this chapter.

6.2 Optimal Sample Size for Pavement

In pavement acceptance testing, state DOTs desig-
nate AQL and RQL. AQL represents the low boundary
of the quality level the agency will accept the product,
and RQL is the high boundary of the quality level that
the agency will reject the product. In this study, AQL
and RQL are described in terms of fraction defective p
(i.e., 1 – PWL). For instance, if AQL is 10%, the agency
will accept the pavement with fraction defective no
greater than 10% (or the PWL no less than 90%). If
RQL is 40%, the agency will reject the pavement with
fraction defective equal to or larger than 40% (or PWL
no greater than 60%). Due to the uncertainty in samp-
ling, there is no guarantee that samples taken from pave-
ments with acceptable quality level will lead to the deci-
sion to accept the product. The probability of pavement
with AQL being rejected is referred to as contractor’s
risk, denoted by a. The probability of pavement with
rejectable quality level being accepted is referred to
the agency’s risk, denoted by b (Chang & Hsie, 1995).
According to the statistical quality control theory, an
acceptance sampling plan is designed to meet the risk
requirements of both parties: (1) the probability of the
pavement with AQL being accepted is 1 – a, and (2) the
probability of pavement with RQL being accepted is b.
Equation 6.1 and Equation 6.2 illustrate this concept.

P(acceptance j p~AQL)~1{a ðEquation 6:1Þ

P(acceptance p~RQL)~b Equation 6:2j ð Þ

In this study, both probabilities in Equation 6.1 and
6.2 are computed using the numerical M-method or
Spk-method proposed in Chapter 5. By solving these
two equations simultaneously, the sample size n and
corresponding critical value are determined (Montgo-
mery, 2009). Unfortunately, there is no simple close-form
solution. In this study, we propose a numerical approach
to derive the optimal sample size to control the agency’s
risk while assuming a fixed risk level for the contractor.
Figure 6.1 illustrates the process. For a specific AQL and
contractor’s risk a, the sample size n is initialized to be
1 and the corresponding critical value M is computed
using either the numerical M-method or Spk-method.
To evaluate the agency’s risk (b), the probability of
accepting RQL pavement, we run 1,000 simulations,
i.e., repeating the following process 1,000 times: taking
n samples from an RQL pavement, calculating the
sample statistic for 1,000 times, and compare the statis-
tical measure of each set of the n samples to the critical

14 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/08



value to make accept or reject decision. The agency’s
risk (b) is calculated as the number of accept decisions
divided by 1,000. If this risk is larger than the desired
level of risk (b0), the sample size n is increased by 1 and
the whole process is repeated till the calculated risk is
no larger than the desired level of risk (b0). The sample
size at the stopping point is the optimal (the smallest)
sample size to control the agency’s risk at the desired level
(b0). This process works because of the general trend:
larger sample size, smaller risk and the starting sample
size being very small.

To illustrate the process numerically, HMA air voids
acceptance testing is used as an example to determine
the optimal sample size that corresponds to the agency’s
risk. According to INDOT’s specification, LSL and
USL for air voids are 2.6% and 5.4%, respectively, and
there are five sublots per lot. AQL and RQL are set
to be 10% and 50% in terms of fraction defective,
following the common practice. The contractor’s
risk is set to be 5% and the standard deviation
of the pavement is assumed to be 0.8 (this value
can be obtained from historical records). Figure 6.2
displays the INDOT’s risk with respect to sample
size. The horizontal axis represents the number of

samples taken at each sublot, and the total sample
size is computed as the product of sublot number and
the sample size per sublot. The vertical axis repre-
sents the agency’s risk in accepting RQL materials.
Furthermore, the horizontal dash line indicates the
10% risk, which is common in the current practice.
Unsurprisingly, agency’s risk decreases with the
increase of sample size, and the curves obtained
from numeric-M method (black line) and Spk-method

Figure 6.1 Process for determining the optimal sample size in pavement acceptance testing.

Figure 6.2 Agency’s risk with varying sample size.
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Figure 6.3 Determining the optimal sample size for soil based on the agency’s risk curves.

(green line) are almost the same. To ensure the risk does
not exceed 10% (shown as dash horizontal line), the
optimal sample size is 2 samples/sublot * 5 sublots/lot 5

10 samples/lot.

6.3 Optimal Sample Size for Soil

In Section 5.3, a set of testing power—defective rate
curves for varying sample sizes have been established.
Since the risk to INDOT in soil acceptance testing is
defined as the probability of accepting defective soil,
it is calculated as 1 – testing power. Consequently, these
testing power curves are converted into risk curves to
illustrate the agency’s risk with respect to defective rate.
Figure 6.3 illustrates the risk curves for sample size of 3,
4, 5, 6, 7, and 9. To determine the optimal sample size,
the user will start with a vertical line corresponding to
the estimated defective rate and a horizontal line cor-
responding to the level of risk. The vertical line intersects
the risk curves. If an intersection is below the horizontal
risk line, the corresponding sample size ensures the risk
is smaller than the desired level and thus, is controlled
as desired. The smallest sample size among this group
is the optimal sample size. For instance, given an area
with an estimated defective rate of 30% (indicated as
the vertical dash line), if the desired risk level is 10%

(represented as the horizontal dash line), sample size
7 and 9 both satisfy this requirement as the intersec-
tions of their corresponding curves and the vertical line
are below the horizontal line. 7 is the optimal sample
size to control the risk to be below 10%.

6.4 Implementation

Two separate tabs in the web tool have been desi-
gnated to determine the optimal sample size for pave-
ment and soil acceptance testing, respectively, following

the methods described. Details are in Sections 10.5
and 10.6.

7. COST ANALYSIS FOR DETERMINING
OPTIMAL SAMPLE SIZE

In Chapter 4 and 5, we have proven that more sam-
ples in acceptance testing leads to less risk to the agency,
and developed methods to determine the optimal sample
size that satisfies the risk expectation of the agency and
contractor. However, a rigorous testing strategy with
more samples increases the cost for QA practice, which
may be difficult to implement due to resource con-
straints of the agency. Therefore, there is a critical need
to take both cost and risk into consideration when
determining the optimal sample size in order to maxi-
mize the benefit of acceptance testing to the agency.

A recent NCHRP report (National Academies of
Sciences, Engineering, and Medicine, 2017) pointed out
that the cost of quality consists of two compartments:
cost of conformance and cost of non-conformance. In
pavement acceptance testing, the cost of conformance
refers to the detection cost including all costs asso-
ciated with determining the level of conformance of
the product, such as sampling and testing cost. The
cost of non-conformance refers to the impact caused
by defective or failed materials, such as repair or rework
cost, and the reduced life of the pavement. Agency’s risk
in incorrectly accepting defective materials has a direct
connection with the cost of non-conformance. The lower
the agency’s risk, the lower probability of accepting
defective materials and less expected cost of non-
conformance attributed to repair or rework of defec-
tive products. Consequently, when more samples are
taken, the conformance cost is higher and the non-
conformance cost is lower. The key challenge is to
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determine the optimal sample size to minimize the total
cost in acceptance testing.

In this chapter we aim at deriving the optimal sample
size that corresponds to the lowest total cost from an
economic perspective. Inspired by Gharaibeh, Garber,
and Liu (2010) and Cho, Najafi, and Kopac (2011), two
cost analysis approaches are developed to evaluate the
impact of sample size on the total cost of acceptance
testing by integrating the risk of making wrong accep-
tance decisions. In the first approach, the acceptance
decision choice is either to accept or reject the pave-
ment, and the risk of making wrong decision is computed
using numerical M-method. In the second approach,
the acceptance decision is extended to pay factor, and
the risk of accepting higher pay factor is computed
through a numerical method. In both approaches, the
sample size that corresponds to the lowest total cost is the
optimal sample size.

7.1 Approach 1: Cost Analysis Considering Accept/
Reject Decisions

In Approach 1, three cost components are conside-
red and the decision choice is limited to either accept
or reject. The first two cost components are adopted
from the sample size optimization model developed by
Gharaibeh et al. (2010), namely cost for sampling and
testing and cost of making incorrect acceptance deci-
sions. The third cost component is relevant future cost
(e.g., maintenance cost) caused by the defective or failed
materials.

Equations 7.1–7.4 illustrate the formulas to calculate
the total cost and individual costs. Equation 7.1 illu-
strates that the total cost is sum of three cost compo-
nents: the sampling and testing cost (costT), the cost of
making incorrect decisions (costD), and the future cost
(costF) of the defective materials. Equation 7.2 com-
putes the sampling and testing cost as the product
of sample size n and the unit cost c of sampling and
testing. Equation 7.3 computes the cost associated with
making the incorrect decision of accepting defective
materials. This cost component is the expected cost of
the defective portion. It is calculated as the product of
(1) the risk (b) of INDOT in accepting RQL pavement
using proposed numerical M-method (illustrated in
Figure 6.1), (2) the proportion of pavement with RQL
(PRQL) according to the historical records, and (3) the
contract amount of the pavement, calculated as the bid
unit price (B) of the pavement times the lot size (S).
Equation 7.4 computes the future maintenance cost due
to the defective pavement as a fraction of the expected
cost of the defective portion, where Ipercent is the cost
impact coefficient of defective materials that represents
the fraction.

costtotal~costTzcostDzcostF ðEquation 7:1Þ

costT~c|n ðEquation 7:2Þ

Figure 7.1 Determining the optimal sample size through cost
analysis.

costD~b|PRQL|(B|S) ðEquation 7:3Þ

costF~b|PRQL|(B|S)|Ipercent ðEquation 7:4Þ

Figure 7.1 conceptually illustrates the curves of these
cost components with varying sample sizes. The straight
line for the sampling and testing cost illustrates that this
cost component increases linearly with the increase of
sample size. Both curves for cost of making incorrect
acceptance decision and relevant maintenance cost
decreases as the sample size increases due to the risk
factor—larger sample size, lower risk. The total cost
decreases as the sample size increases till reaching the
lowest total cost at the optimal sample size and then
increases from this point on as the sample size con-
tinues to increase. The sample size corresponding to the
lowest total cost is the optimal sample size.

7.2 Approach 2: Cost Analysis Considering Pay Factor
Decisions

In Approach 2, we extend the acceptance/rejection
decision to pay factor decision—making payment adjust-
ment (either penalty, full payment, or bonus) according
to the quality level of the product. We still consider the
same three cost components, but the computations for
the cost of making incorrect decision and the future cost
associated with defective materials are different.

Equations 7.5–7.8 illustrate the computation in
detail. Considering that the pay factor corresponds to
different quality levels, the risk to the agency in App-
roach 2 is defined as the probability of using a higher
pay factor and the cost for this type of incorrect deci-
sions is the overpay portion, not the entire contract
price. Consequently, the cost of choosing incorrect
pay factor is calculated as the difference between the
payment as suggested by the samples and the true
payment for the population. Note that pfsample repre-
sents pay factor as suggested by the samples and
pfpopulation represents the true pay factor for the
population. The future cost of defective materials is
still computed as a fraction of the cost of making
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incorrect decisions. The assumption is that the agency
faces loss and incur cost only when the sample pay
factor is higher than the population pay factor. If the
sample pay factor is smaller, the cost of incorrect
decision and the future cost are both zero.

costtotal~costTzcostDzcostF ðEquation 7:5Þ

costT~c|n ðEquation 7:6Þ

costD~(pfsample{pfpopulation)|(B|S) ðEquation 7:7Þ

costF~(pfsample{pfpopulation)|(S|B)|Ipercent

ðEquation 7:8Þ

The numerical M-method used in Approach 1 is no
longer applicable to computing the risk in Approach
because it only considers the acceptance/reject decision
but does not distinguish different pay factors. Therefore,
a numerical method is developed to compute the costs in
Approach 2, illustrated in Figure 7.2. The process starts
with a pair of m0 and s0, which are the mean and
standard deviation of the pavement estimated using a
large number of samples from the historical records.
For all possible populations that contributed to this pair
of mean (m0) and standard deviation (s0), their popula-
tion means follow the normal distribution N,(m0,s 2

0 ).

Based on this observation, we generate 100 popula-
tions by randomly selecting population mean m from
N,(m0,s 2

0 ) and setting the population standard
deviation s to be s0. For each of the generated 100
populations, we run 1,000 simulations, i.e., repeat the
process—taking n random samples from the population
and computing the cost using Equations 7.5–7.8 1,000
times. The average of the resulting 1,000 total costs
is the estimate of the total cost of this particular
population. The average of the total costs of the 100
populations is the expected cost of sample size n. By
varying the sample size, the cost-sample size curve is
derived, and the minimal total cost and the correspond-
ing optimal sample size are identified.

7.3 Case Study

Air voids acceptance in HMA pavement is used as an
example to demonstrate the two cost analysis approaches.
The pavement property is estimated using air voids
QA data from INDOT projects in the Crawfordsville
District in 2016. The average and standard deviation of
air voids are 3.89% and 0.8%. The bid price is about $86/
t. According to the specification, a typical lot of HMA
pavement consists of 3,000t and is divided into 5 sublots.
The sampling and testing cost for one sample is assumed
to be $200. The cost impact of the defective materials
Ipercent is set to be 0%, 50%, and 115% of the bid price.

Figure 7.2 Approach 2 workflow for determining the total cost at a given sample size n.
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7.3.1 Results from Approach 1

Six scenarios are considered in Approach 1 with
different sets of PRQL and Ipercent, listed in Table 7.1. In
all scenarios, AQL and RQL are set to be 10% and 50%

and the contractor’s risk is set to be 0.1.

Figure 7.3 illustrates the cost curves for the six scena-
rios, where the vertical dash lines intersect the hori-
zontal axis at the optimal sample size. For instance, in
Scenario 4 (see Figure 7.3d), the optimal sample size is
10 and the corresponding total cost is $2,930. These
curves can be cross-compared to evaluate the impact on
the optimal sample size from the parameters of PRQL

and Ipercent. Figure 7.4 illustrates the impact of Ipercent

given a specific PRQL. When PRQL50.1, the cost impact
coefficient Ipercent does not have a significant impact on
the sample size, which remains 10 for all three scena-
rios. When PRQL50.2, the optimal sample size increase
as Ipercent increases. In all scenarios, a larger Ipercent leads
to a higher total cost. Figure 7.5 illustrates the impact

of PRQL given a specific Ipercent. In general, the optimal
sample size and total cost both increase with the
increase of PRQL, except that the optimal sample size
remain unchanged when the cost impact of defective
materials is not considered. It is noted that when the
sample size is relatively large (.20), the total cost is
consistent in all scenarios and increases linearly with the
increase of sample size. This is because when the sample
size is large, the risk of accepting defective material
becomes very small, and the cost associated with erro-
neous decisions is negligible compared to the sampling
and testing cost.

7.3.2 Results from Approach 2

In Approach 2, the pay factor (PF) of air voids is
calculated using Equation 7.9 and 7.10 according to the
INDOT specification (INDOT, 2016). Note that when
PWL , 50, the material is considered as failed material
and the pay factor is zero.

PF~(105{0:5|(100{PWL))=100(PWLw90)

ðEquation 7:9Þ

PF~(100{0:000020072|(100{PWL)3:5877)=

100(50ƒPWLƒ90)

Equation 7:10ð Þ

Nine scenarios are considered in Approach 2 with
different combinations of population and cost impact
coefficient, listed in Table 7.2. For population 1 and 2,

TABLE 7.1
Case study settings in Approach 1.

Scenario PRQL Ipercent

1 0.1 0

2

3 115

4 0.2 0

5

6 115

50

50

Figure 7.3 Optimal sample sizes and total costs from Approach 1.

Figure 7.4 Impact of PRQL in Approach 1.
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their mean value is the center of the specification limits,
2:6z5:4

i.e., m0~ ~4 and the standard deviation is set as
2

USL{m
s 0 5:4{4 USL{m

0~ ~ ~0:47 and s 0
0~ ~0:7.

3 3 2
Population 3 is estimated from the INDOT historical
data with a mean value of 3.89 and standard deviation
of 0.8. As a result, Population 1 has the highest quality
level, with only 0.28% of the pavement in the RQL,
and Population 3 has the lowest quality level, with
10.68% of the pavement in RQL. The proportion of
Population 2 in RQL is 4.56%.

Figure 7.6 illustrates the cost curves for the nine
scenarios, where the vertical dash lines intersect the
horizontal axis at the optimal sample size. For instance,
in Scenario 4 (see Figure 7.6d), the optimal sample
size is 10 and the corresponding total cost is $6,332.
Similar to Approach 1, cost curves in Approach 2 can
also be cross-compared to evaluate the impact on the
optimal sample size from the parameters of PRQL and
Ipercent. Figure 7.7 illustrates the impact of Ipercent given
a specific population, and the results suggest that the
optimal sample size and total cost both increase as the
cost impact of defective materials increases. Figure 7.8

illustrates the impact of the pavement quality given a
specific cost impact coefficient, which indicates that the
optimal sample size and total cost both decrease as the
quality of the pavement increases.

Compared with Approach 1, Approach 2 results in
larger optimal sample size and higher total cost when
the same historical data are used. This is because the
acceptance decision in Approach 1 is either acceptance
or rejection; INDOT only overpays for the failed mate-
rial (i.e., the fraction defective is larger than 50%). In
Approach 2, however, the pay factor is incorporated,
the decision choices are all possible pay factors ranging
from 0 (for failed materials being rejected) to over 1
(bonus pay), and INDOT might overpay the contractor
for acceptable materials when incorrectly using a higher
pay factor.

7.4 Findings and Recommendations

The main findings and recommendations are as
follows.

N The cost analysis methods are capable of determining the
optimal sample size to minimize the total cost including
the cost attributed to the risk.

N Since Approach 1 considers Accept/Reject as the only
decision choices but Approach 2 considers all pay factors
ranging from 0 (Reject) to over 1.0 (bonus), the risk is
defined differently in two approaches. Results show that
Approach 2 results in larger optimal sample size under
the same setting as Approach 1.

N As expected, the optimal sample size and the correspond-
ing minimal total cost are sensitive to the values of the
input parameters and therefore, it is very important to
objectively estimate the input parameters using historical
records.

As a practical implementation, the cost-benefit
analysis has been incorporated in the newly developed
web tool as a standalone tab, detailed in Section 10.7 in
Chapter 10.

Figure 7.5 Impact of Ipercent in Approach 1.

TABLE 7.2
Case study settings in Approach 2.

Scenario Population (m0, s0) Ipercent

1

2

3

1 (4, 0.47) 0

115

4

5

6

2 (4, 0.7) 0

115

7

8

9

3 (3.89, 0.8) 0

115

50

50

50
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Figure 7.6 Optimal sample sizes and total costs from Approach 2.

Figure 7.7 Impact of Ipercent in Approach 2.

Figure 7.8 Impact of the pavement quality in Approach 2.
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8. QC CHART PATTERN ANALYSIS

In the current practice, the acceptance testing in
pavement QA practice relies on a lot-by-lot sampling
and testing strategy, i.e., INDOT takes random samples
from each lot, makes decision to whether accept or reject
the lot, and moves on to the next lot. Variance among lots
is not considered. While such practice ensures the com-
patibility of each lot with the specification requirement, it
does not guarantee the consistency of multiple lots in a
project. Motivated by the promise of QC charts in con-
trolling the consistency among multiple lots, this chapter
focuses on applying QC chart to QA data as a comple-
mentary tool in acceptance testing, aiming at ensuring the
consistency of the production process at a project level.

8.1 Quality Control (QC) Chart

QC chart is a statistical tool to determine if a process
is in a state of control. A process is in statistical control
when it only involves chance causes of variation, and
is out-of-control when assignable causes exist (Mon-
tgomery, 2009). The QC chart is an effective tool to
control the production process and detect potential
abnormalities.

8.1.1 Typical QC Chart

Figure 8.1 displays a typical QC chart, which plots
the quality characteristic (e.g., air voids and flexural
strength) computed from a group of samples versus the
group number or time. It consists of three levels: center
line, upper control limit (UCL), and the lower control
limit (LCL), represented as horizontal lines. The center
line represents the average quality characteristic in the
process. The UCL and LCL represent the limits of the
quality characteristics if the process is in control.
Normally, most points should fall between UCL and
LCL, and when points fall outside the UCL or LCL,
the process is regarded as statistically out-of-control.

Figure 8.1 Typical QC chart (adapted from Montgomery,
2009).

8.1.2 Construction of QC Chart

According to the measurement of quality character-
istic being applied, there are two common types of
QC chart: x chart and R chart. The x chart uses the
mean value of the quality characteristic to control
the average of the process; R chart uses the range
of the quality characteristic to control the variability
of the process. These two types of QC charts are
adopted in this study to evaluate the quality of the
pavement. The construction process of both types of
charts is briefly introduced herein. Readers may refer
to most quality control textbooks (e.g., Montgomery,
2009) for details.

Assuming the quality characteristic follows normal
distribution, but its mean m and standard deviation s
are unknown, to plot the center line and the control
limit lines, m groups of samples at the size of n will be
used to estimate their values. Specifically, for a group of
samples with values of x1,x2,…,xn, the average of this

x1zx2z:::zxn
group is calculated as x~ . The center

n
x1zx2z:::zxm

line of the x chart is derived as x~ ,
m

where x th
m is the average of m group of samples. In the

case of pavement acceptance testing, for instance, one
lot can be viewed as a group and the number of samples
in a lot as the sample size. If a pavement project consists
of 10 lots, and 5 random samples are taken per lot, then
m 5 10 and n 5 5, and the center line of the x chart is
computed using the above procedure.

Three-sigma rule is applied to construct the control
limits of UCL and LCL. This rule ensures that for a
process that is under control, the probability of the
quality characteristic outside the area bounded by UCL
or LCL is 0.001. In practice, the standard deviation s of
the process is estimated from the ranges of m groups of
samples. Given x1,x2,…,xn, the range of this sample
group is computed as R5xmax–xmin. With m groups,

R1zR2z:::zRm
the average range isR~ . As a result,

m
the x chart is constructed as follows, where A2 is a
constant varying with the sample size and can be looked
up in the standard factor table for QC charts. Note that
to ensure the reliability of the QC charts, it should be
established using a relatively large number of groups
(around 20) (Montgomery, 2009).

UCL~xzA2R

Center line 5x

LCL~x{A2R

Similarly, the center line and control limits for R
charts are computed as follows, where D3 and D4 are
constants varying with the sample size, which can also
be looked up in the standard factor table for QC charts.

UCL~D4R
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Center line 5R

LCL~D3R

8.1.3 Control Charts for Individual Measurements

A special type of control chart, referred as music bar
chart, plots individual measurements (i.e., sample size 5

1) according to the order of test (Willenbrock, 1976).
This type of chart can be used to identify trends during
the production as well as to evaluate if the work satis-
fies the specification by comparing the test results with
the target value and specification limits regulated by the
agency. In the case of pavement acceptance testing, the
measurement of each sample of the sublot can be plotted
in the music bar chart. By setting control limits using
all samples in one lot, it is possible to evaluate the
production process at a lot level.

8.2 Interpretation of QC Chart

A control chart can identify out-of-control condi-
tions when one or more points fall outside the control
limits (i.e., UCL and LCL) or points formulate certain
patterns. This study reviews some typical patterns of
QC chart that can be used to detect out-of-control
conditions. Table 8.1 lists the most common patterns
of QC charts, their recognition criteria, and the possi-
ble causes based on the review of existing studies
(Pyzdek & Keller, 2003; Stapenhurst, 2013; Montgomery,
2009; McNeese, 2004). For the QC charts included in
Table 8.1, 2-sigma and 1-sigma lines are also included,
separating the area bounded by the UCL and LCL lines
into two A zones, two B zones, and two C zones to assist
further in identifying certain patterns. Note that both x
chart and R chart should be used to ensure that both the
average and variability of the process are controlled
simultaneously.

8.3 Case Study

In this section, two case studies were conducted to
demonstrate the efficacy of QC chart using HMA air
voids QA data from two INDOT projects. The result
of QC chart was compared with acceptance decisions
derived from the numerical M-method and the current
PWL method.

8.3.1 Case Study 1

The first case study is the RS-31500 project in
Crawfordsville. This project consists of 17 lots and each
lot contains 5 sublots. One air void sample is taken at
a random location for each sublot. The average and
range is computed for each lot.

Figure 8.2 illustrates the music bar chart for case
study 1, with values of individual samples plotted along
the horizontal axis. In both charts, specification limits
(USL and LSL) are represented as black dash lines.

In Figure 8.2a, the control limits (UCL and LCL) and
center line (CL) are established using the first 25
samples, which serve as the base line to evaluate if the
following process is under control. Samples from some
lots tend to get clustered (e.g., sample 15–20, sample
55–60) and some of them tend to increase or decrease
(e.g., sample 25–30, sample 45–50). In Figure 8.2b, the
control limits and center line are established on a lot
basis, i.e., the five samples of one lot are used to com-
pute the UCL, LCL and CL for this specific lot. For
each lot, the red dot line represents the center line, and
the blue shaded area represents the area bounded by
the UCL and LCL, which implies the variation among
samples in one lot. From the results, the control limits
vary a lot across different lots, while central lines are
relatively stable with slight fluctuation. Additionally,
some of the control limits fall outside the specification
limits (e.g., sample 5–10 for lot 1), indicating the large
variation within the lot.

Figure 8.3 illustrates the R chart and x chart for the
17 average values, constructed following the method
described in Section 8.1.2. In both charts, the red lines
represent the control limits, the green lines represent the
center line, and the red dot lines represent the two-
sigma and one-sigma lines. The specification limits
(USL and LSL) are indicated using blue dot lines in the
x chart. Each point, denoted as either ‘‘A’’ or ‘‘R’’, plots
the corresponding statistical value for a lot. Letter ‘‘A’’
means the lot is accepted and letter ‘‘R’’ means the lot is
rejected, using our numerical M-method.

There are two main observations: (1) in general, the
average and range of the air voids varies randomly
between UCL and LCL, and (2) Pattern 1 is detected in
the x chart, revealing the process is out of control and
lot 1 is the outlier.

Table 8.2 compares the analysis results using QC chart,
current PWL method, and numerical M-method. For lot
9 and lot 13, the QC chart results align with numerical
M-method and PWL method. In QC chart, the average
values are almost at the boundary, which is Pattern 1 in
Table 8.1. The numerical M-method suggests to reject
the lot and the PWL value is small (considering 0.9 being
the acceptance threshold). For lots 1, 2, and 5, QC chart
reveals Pattern 1 in the x chart for lot 1 and large range
values for lots 2 and 5, the numerical M-method rejects
the three lots when RQL is set at 0.2 and 0.1, but accepts
the lot when RQL is set at 0.3, and the current PWL
method fails to detect the abnormal pattern and suggests
full payment for all three lots. Table 8.2 results confirm
the advantage of the numerical M-method over PWL in
the current practice and suggest that QC charts can serve
as a supplementary tool to detect abnormal conditions of
the entire process and ensure the consistency at both lot
and project levels.

8.3.2 Case Study 2

The second case study is the RS-34919 project in
Fort Wayne. This project consists of 13 lots and each
lot contains 5 sublots. One air void sample is taken at a
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TABLE 8.1
Interpretation of most common QC charts patterns.

No. Typical pattern Recognition criteria Possible causes

1 One or more points fall outside the A special cause is present in the process.

control limits.

2 Two out of three consecutive A special cause exists.

points fall in zone A or beyond.

(Note: the two points must be on

the same side of the average, i.e.,

either upper Zone A or lower

Zone A).

3 Four out of five consecutive points A special cause exists.

fall in zone B or beyond.

(Note: the four points must be on

the same side of the average,

i.e., either upper Zone B or

lower Zone B).

4 Fifteen or more consecutive points It happens when samples are drawn from

fall in zone C, either above or two or more distributions and have been

below the center line. combined, resulting in unusually high

presence of points near the centerline.

This pattern infer that the control chart is

not valid for this process, user must first

correct errors in the methods of sampling.

5 Eight or more consecutive points There is more than one processes present

lie on both sides of the center but sampling is done for each process

line with none of the points in separately. Such pattern may occur if

zone C. different shifts are operating at different

averages.

6 (1) Seven points in a row above the There is an out-of-control situation if

center line, (2) Seven points in a one of the pattern is true.

row below the center line, (3)

Seven points in a row trending

up, or (4) Seven points in a row

trending down.
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Figure 8.2 Music bar chart for case study 1.

Figure 8.3 QC charts for case study 1.

TABLE 8.2
Comparison among QC chart, PWL, and numerical M-method for case study 1.

QC chart Numerical M-method (risk50.1) PWL

Lot R chart �x chart RQL50.3 RQL50.2 RQL50.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Large value

Large value

Pattern 1

Close to the UCL

Falls on the UCL

Accept

Accept

Accept

Accept

Accept

Accept

Accept

Accept

Reject

Accept

Accept

Accept

Reject

Accept

Accept

Accept

Accept

Reject

Reject

Accept

Accept

Reject

Accept

Accept

Accept

Reject

Accept

Accept

Accept

Reject

Accept

Accept

Accept

Accept

Reject

Reject

Accept

Accept

Reject

Accept

Accept

Accept

Reject

Accept

Accept

Accept

Reject

Accept

Accept

Accept

Accept

1

0.98

1

1

0.98

1

1

1

0.9

1

1

1

0.87

1

1

1

1

random location for each sublot. The average and
range is computed for each lot.

Figure 8.4 illustrates the music bar chart for case
study 2. In Figure 8.4a, the control limits and center
line are established using the first 25 samples. Sample
30–45 are below the center line, which may be caused

by the introduction of some disturbances that affect a
group of nearby samples. In Figure 8.4b, the control
limits and center line for each lot are computed using
samples of that lot. The process stabilizes after sample
45 because the UCL and LCL tend to be steady, indi-
cating a more consistent process. There are some large
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Figure 8.4 Music bar chart for case study 2.

Figure 8.5 QC charts for case study 2.

TABLE 8.3
Comparison among QC chart, PWL, and numerical M-method for case study 2.

QC chart Numerical M-method (risk50.1) PWL

Lot R chart �x chart RQL50.3 RQL50.2 RQL50.1

1

2

3

4

5

6

7

8

9

10

11

12

13

Pattern 1

Large value

Pattern 2

Pattern 1 and 2

Pattern 2

Pattern 2

Accept

Accept

Accept

Accept

Reject

Accept

Accept

Reject

Accept

Accept

Accept

Accept

Accept

Accept

Accept

Accept

Accept

Reject

Reject

Accept

Reject

Accept

Accept

Accept

Accept

Accept

Accept

Accept

Accept

Accept

Reject

Reject

Accept

Reject

Accept

Accept

Accept

Accept

Accept

1

1

1

1

0.74

0.96

1

0.8

1

1

1

1

1

fluctuations during the process from lot 5 to lot 8
(i.e., sample 20 to 40) and the variation within a lot
decreases, which might be caused by some actions being
taken to control the construction quality.

Figure 8.5 illustrates the QC charts for case study 2.
Pattern 1 is identified in the R chart: the range of lot
5 exceeds the UCL. Two patterns are recognized in
the x chart. Lot 8 exhibits Pattern 1: falls outside
the LCL. Lots 7 and 8 and lots 10 and 11 exhibit

Pattern 2: two out of three consecutive points fall in
zone A or beyond.

Table 8.3 compares the analysis results using QC
chart, current PWL method, and numerical M-method.
For lot 5 and lot 8, QC charts aligns with numerical
M-method and PWL method. The QC charts reveals
Pattern 1 in the R chart for lot 5 and Pattern 1 and 2
in the x chart for lot 8. The numerical M-method
suggests to reject both lots, and their PWL values are
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small (considering 0.9 being the acceptance threshold).
For lot 6, QC chart reveals the large range and numeri-
cal M-method rejects the lot when RQL 5 0.2 and 0.1.
For lot 7, 10, and 11, QC chart detects pattern 2, while
numerical M-method accepts the lots, and PWL method
fails to identify abnormal conditions and suggests full
payment for all three lots.

The discrepancy between out-of-control patterns iden-
tified using QC charts and the acceptance decisions
made by the numerical M-method and PWL method is
because both numerical M-method and PWL method
rely on measurements of individual lot and therefore,
they are more sensitive to the pattern where an indivi-
dual lot is outside the control limits. On the contrary,
QC charts evaluate the pattern formed by consecutive
lots and detect out-of-control process even all lots
are within the limits. Thus, QC chart and numerical M-
method can be used as complementary tools to ensure
not only the compatibility of individual lots with the
specification but also the consistency at the entire pro-
ject level.

8.4 Findings and Recommendations

The main findings and recommendations are as
follows.

N QC chart constructed using pavement QA data is an

effective tool to evaluate the consistency of pavement and

ensure that the project is under control.

N QC chart and the numerical M-method complement each

other to ensure the quality of both individual lot and

consistency of the entire project, which is missing in the

current practice.

9. VALIDATION AND CASE STUDIES

In this chapter, historical data from INDOT are used
to validate (1) the testing power using numerical M-
method in PCCP pavement, (2) the testing power using
numerical M-method in HMA pavement, and (3) the
testing power using simulation approach in soil com-
paction, and answer questions in implementation on (1)
the influence of merging two lots on the testing power,

and (2) the influence of averaging samples in one sublot
on the testing power.

9.1 Validation Using PCCP Data

In the development of numerical M-method, we assume
the pavement population follows normal distribution
and compute the testing power in acceptance testing
using simulated population. In this section, historical
PCCP data are used to check the normality of the
population and validate the simulated testing power.

Both normality validation and testing power valida-
tion were performed using three sets of PCCP flexural
strength data. The first dataset includes all historical
flexural strength data from 60 projects, with a total of
2,469 sublots and 4,938 flexural strength measurements
(2 samples per sublot). The second dataset is from pro-
ject IR-31230, with 236 sublots and 472 flexural strength
measurements. The third dataset is from project IR-
33045, with 139 sublots and 278 flexural strength
measurements.

9.1.1 Validation of Normality

Figure 9.1 illustrates the histograms of the three sets
of flexural strength data. The black curves represent the
empirical density distribution curve and the blue curves
represent the theoretical normal distribution with the
same mean and standard deviation as the dataset. The
mean values of the three datasets are 650.04, 622.08,
and 704.07, respectively. The standard deviations are
69.41, 44.22, and 60.38.

All three charts indicate that the empirical density dis-
tribution is slightly skewed from the normal distribution.
The Shapiro–Wilk test (Shapiro & Wilk, 1965) was app-
lied to check the normality of the data. The p-value for all
three cases are less than 0.01, resulting in rejecting the null
hypothesis (i.e., the population is normally distributed),
which indicates that the flexural strength of the pavement
does not follow normal distribution. The correlation
between two samples taken in the same sublot was also
examined. The correlation coefficients are 0.66, 0.69, and
0.88, indicating that they are strongly correlated. This
might be a possible cause of the non-normality.

Figure 9.1 Histogram of flexural strength.
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9.1.2 Validation of Testing Power

The process to compute the testing power, or the
probability of rejecting the pavement, using real data is
detailed as follows.

1. Preset desired RQL and agency’s risk.

2. Calculate critical value M following method described in

Section 5.2.1.2.

3. For each lot of the project, compute its defective rate

p equals to 1 – PWL. If p , M, we accept the lot, other-

wise, we reject the lot.

4. The proportion of lots being rejected is the estimation of

testing power.

According to the specification, the pavement with
flexural strength less than 570 psi will receive penalty.
To evaluate the effectiveness of the simulation app-
roach for pavement with varying quality levels, this study
sets the lower specification limit (LSL) to be 570 psi,

600 psi, and 650 psi, and the RQL is set to be 20%,
30%, and 40%. The desired risk level is 10%, and the
sample size is 6 (2 samples/sublot * 3 sublots/lot).

Figure 9.2 illustrates the comparison of testing
power obtained using simulated population and real
data under various settings. The green curves represent
the simulated testing power with respect to defective
percentage of the pavement. The black dots represent
the testing power computed from real data when the
LSL equals 570, the red dots represent the testing
power of real data when LSL equals 600, and the green
dots represent the testing power of real data when LSL
equals 650. Apparently, given the same dataset, the
defective percentage of the pavement increases as the
LSL increases. For instance, in case study 2 (Figure 9.2
d, e, and f), when LSL is 570, the defective percentage is
almost zero. When LSL is 600, the defective percentage
is less than 10%, while it increases to about 45% when
LSL is 650.

Figure 9.2 Comparison of testing power in flexural strength acceptance testing.
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In general, the discrepancy between simulated testing
power and the real one increases as the LSL increases
for all cases. For instance, in case study 2, when the
LSL is 570, the simulated testing power aligns well with
the real one. When products are in rejectable region
(e.g., LSL is 650), however, the real testing power is
much lower than simulated one, indicating INDOT may
take more risk than the theoretical risk. In addition, for
all cases, larger RQL will lead to smaller discrepancy
between the simulation and real data.

It is argued that one possible reason for the discre-
pancy between simulated testing power and the real one
is the correlation between two samples of the same
sublot (e.g., the correlation coefficient is 0.69 in case
study 2). To mitigate such impact, we combine the two
samples and treat their average as the flexural strength
of the sublot. Consequently, the sample size for each lot
becomes 3.

Figure 9.3 illustrates the comparison of testing power
with averaged flexural strength. In general, averaging

two samples in one sublot reduces the discrepancy
between simulated and real testing power. For instance,
in case study 2, when LSL is 570 and 600, the testing
power computed from simulation and real data is almost
the same for all RQLs, and the discrepancy decreases
compared to the original result when LSL is 650 (green
dots in Figure 9.2 d, e, and f). Averaging the two samples
in one sublot improves the testing power of acceptance
testing as the averaged result is closer to the normality.
However, such approach will decrease the sample size
from 6 to 3, resulting in zero critical value in all
scenarios and even the simulation approach cannot
control the agency’s risk at the desired level. Therefore,
it is only preferred when there are relatively large num-
ber of sublots in one lot.

9.2 Validation Using HMA Data

In this section, the normality of the population and
the testing power of simulated population computed via

Figure 9.3 Comparison of testing power using averaged samples.
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numerical M-method are validated using HMA data.
Two sets of HMA air voids data were used to test the
normality and validate the testing power. The first
dataset includes all historical air voids data from 17
projects in Crawfordsville, with a total of 232 sublots
and 232 air void measurements (one sample per sublot).
The second dataset is from project IR-31500, with a
total of 85 sublots and 85 air voids measurements.

9.2.1 Validation of Normality

Figure 9.4 illustrates the histogram of air voids,
where the horizontal axis represents the air voids value
and the vertical axis represents the density. In both
charts, the black curves represent the empirical density
of the measurements and the blue curves represent the
density of normal distribution which has the same mean
and standard deviation with the dataset. The mean
values of the two cases are 3.89 and 4.02, and the
standard deviations are 0.76 and 0.60. For case study 1,
the p-value of Shapiro–Wilk test is 0.001 (less than
0.01), indicating the air voids in Crawfordsville does
not follow normal distribution. For case study 2, the p-
value of Shapiro–Wilk test is 0.35 (larger than 0.01),
indicating the air voids in project IR-31500 follows
normal distribution.

9.2.2 Validation of Testing Power

The validation of testing power using HMA data was
conducted in a similar way to that using PCCP data.
According to the specification, the USL and LSL for
air voids acceptance testing are 5.4 and 2.6. The sam-
ple size is 5 (one sample/sublot * 5 sublots/lot). The
empirical PWL computed from the real data is 93.1%

and 98.82% for two case studies, respectively. The
desired risk level is set to be 10% and RQL is set to be
30% and 40%.

Figure 9.5 illustrates the comparison of testing power
obtained using simulation approach and real data. In
both charts, the green curves represent the simulated
testing power, and the green dots represent the testing
power computed from the real data. In general, the real

testing power aligns well with the simulated one expect
that in case study 1, the simulation result leads to higher
probability of rejecting the pavement when RQL equals
30% (Figure 9.5a). Such discrepancy might be caused
by the non-normality of the population.

9.3 Validation Using Soil Data

This section aims at (1) validating the effectiveness
of the proposed simulation approach in determining
the testing power of soil compaction, (2) proving the
impact of spatial autocorrelation on the testing power,
and (3) validating the effectiveness of proposed spatial
indices in mitigating the impact of spatial autocorrela-
tion, using soil CMV data. Three types of testing power
were computed and compared: (1) the testing power
was computed using simulation approach (described in
Section 5.3), which assumes the CMV of the entire area
is spatially random distributed, (2) the testing power
was computed using real CMV data, where CMV of the
entire area is spatially auto correlated (proved in Section
4.2), and (3) the testing power was computed using real
CMV data but the sample locations were determined
through a random sampling process that controls the
sample spatial pattern (described in Section 4.3).

9.3.1 Data Description

Four datasets were used, each of which contains
CMV data (measured via Intelligent Compaction, or IC
technology) in one construction area in the U.S. High-
way 31 Kokomo project. Figure 9.6 illustrates the gird
map (grid size is 2m62m) of CMV value converted by
averaging the CMV measurements within each grid.

Given a random sample location, its CMV value is
derived through bi-linear interpolation based on the
sample location, shown as Figure 9.7. The red point
represents the random sample, and the blue points are
the center of its neighboring grids. The CMV value of
the random sample is estimated through linear inter-
polation in both x and y directions. The data processing
was performed on a commercial geographical informa-
tion system (GIS) platform.

Figure 9.4 Histogram of air voids.
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Figure 9.5 Comparison of testing power in air voids acceptance testing.

Figure 9.6 Grid map of CMV data.

9.3.2 Validation of Testing Power

This study uses the CMV data as the measurement to
decide whether a sample is defective or not. That is, if
the CMV of soil is smaller than the target value, the soil

is regarded to be defective. Figure 9.8 illustrates the
comparison between simulated and real testing power
with the sample size being 3, 6, and 9. The horizontal
axis represents the defective rate of the area varying
from 0 to 1, which is achieved by setting different target
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Figure 9.7 Preprocessing of CMV data.

CMV values. The vertical axis is the testing power of
soil acceptance testing, or the probability of identifying
defective soil. Black curves represent the testing power
computed from simulation approach, and blue curves
represent the testing power computed using real data.

In general, the testing power computed through
simulation aligns with that obtained from real data,
especially when the defective rate is relatively large. For
dataset 1–3, when the defective rate is small (e.g., less
than 0.3), the simulated testing power is larger than the
real one, and the discrepancy peaks when the defective
rate is around 0.1.

Figure 9.9 illustrates the discrepancy between simu-
lated and real testing power in dataset 2. The discre-
pancy increases as the sample size gets larger, which
might be contrary to common sense—larger sample
sizes should lead to more reliable decisions and the
testing power should be closer to the simulated one.
In fact, such pattern actually reveals the influence of
spatial autocorrelation. As the sample size increases,
samples are more likely to be spatially clustered, leading
to decreased effective sample size, which may have a
negative impact of the testing power.

Figure 9.10a illustrates the comparison of the testing
power of the random sampling process that controls the
sample spatial indices within the 80% reference range
(red line) to that of the original random sampling (blue
line) that does not control the spatial indices, based on
dataset 2 with the sample size of 12. Figure 9.10b plots
the discrepancy between simulated testing power and
real one using these two random sampling approaches.
The results suggest that the testing power of spatial-
controlled random sampling is closer to the simulated
one, which indicates that the use of spatial indices
can mitigate the impact of spatial autocorrelation.

Note that, with only one dataset, the improvement is
not significant. But when more datasets are involved,
the proposed method is expected to be effective in ensu-
ring the reliability of the proposed random sampling
process in addressing the spatial autocorrelation issue.

9.4 Issues in Pavement Acceptance Testing
Implementation Strategy

In Chapter 6, we have shown that, given a specific
RQL, AQL and contractor’s risk, agency’s risk is only
influenced by sample size regardless of the lot size of the
pavement. Two questions arose regarding the imple-
mentation strategy: (1) Is it possible to increase the size
of each lot (e.g., merge two populations) so that a larger
area can be tested with the sample size? (2) Since more
than one samples may be taken for each sublot (e.g.,
two samples are taken per sublot in flexural strength
testing of PCCP), is it equivalent to treat each sample
separately or average the samples of one sublot and
treat the averaged one as a single sample? In the sepa-
rate approach, if two samples are taken per sublot and
each lot includes three sublots, the sample size would be
2 * 3 5 6, while in the average approach, the sample
size would be 1 * 3 5 3 since the two samples of the
sublot is substituted by their average. Note that in
INDOT’s current practice, the separate approach is
used. In this section, these two questions are answered
by comparing the testing power of different scenarios
through simulations.

9.4.1 Influence of Merging Populations on Testing Power

Intuitively, the testing power of a population that
is merged from two populations is between the two
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Figure 9.8 Comparison of testing power.

Figure 9.9 Discrepancy between simulated and real testing
power in dataset 2.
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individual testing powers of the two populations. In this
section, the testing power for the merged population
(i.e., combining two lots to form a new lot) is compared
with individual testing powers obtained for separate
populations. Setting RQL to be 0.3, agency’s desired
risk 10%, and sample size 5, five scenarios are crafted
with different combinations of PWLs and the testing
powers are computed. Table 9.1 illustrates the results.

The results suggest that (1) the PWL for the merged
of is the average of the PWL for lot 1 and 2, and (2) by
merging two lots, we compromise on the testing power,
which means we may reject (or accept) both good and
bad lots since the decision is made for the entire merged
lot. Specifically, if the quality of one lot is much better
than RQL and another lot is slightly lower than RQL



Figure 9.10 Comparison of random sampling with and without spatial control in dataset 2.

TABLE 9.1
Comparison of testing power between single lot and merged lot.

Scenario

Lot 1 (PWL)

(%)

Testing power 1

(%)

Lot 2 (PWL)

(%)

Testing power 2

(%) Merged lot (PWL) (%) Testing power (%)

1 90 56 60 96 75 85

2 90 56 80 78 85 70

3 80 78 60 96 70 90

4 80 78 50 98 65 94

5 60 96 50 98 55 97

Note: Testing power is the probability of rejecting the lot.

(i.e., Scenario 1), the merged lot might lead to lower
probability of rejecting the lot with slightly rejectable
quality. If the quality of one lot is much lower than
RQL and another lot is slightly better than RQL (i.e.,
Scenario 4), the merged lot might result in higher
probability of rejecting the good lot. If the quality of
two lots are both acceptance or rejectable (i.e., Scenario
2 and 5), the merged lot does not have a significant
influence on the acceptance decision.

9.4.2 Influence of Averaging Samples on Testing Power

In this section, the testing power obtained using all
samples (referred as sampling version) is compared with
that obtained using averaged samples (referred as sub-
sampling version). Assuming there are 5 sublots in one
lot and two samples are taken per sublot, the samples
size of sampling version is 10, while that of subsampling
version is 5. Given RQL being 0.3 and 0.5, six scenarios
are considered with different levels of correlation
(represented as correlation coefficient r) between two
samples of one sublot, i.e., r 5 0, 0.16, and 0.7, where
r 5 0 indicates the samples of one sublot are inde-
pendent, while r 5 0.7 indicates the samples are highly
correlated.

Figure 9.11 illustrates the testing power of sampling
and subsampling. In all charts, M1 and Spk1 represent
the testing power of sampling version computed using

numerical M-method and Spk-method, and M2 and
Spk2 represent the testing power of subsampling version.
The results suggest that subsampling results in higher
probability of rejection when samples are independent
or slightly correlated, since their sample size is sma-
ller than that of sampling version. When samples are
highly correlated, subsampling succeeds in control-
ling the agency’s risk at desired level of 10% at the
boundary of acceptable and rejectable regions, while
sampling version leads to higher risk.

9.5 Findings and Recommendations

The main findings and recommendations are as
follows.

N For PCCP pavement, the simulated testing power aligns

well with the real testing power when the pavement is in

good quality. However, when the defective percentage

of the pavement is relatively large, the simulation app-

roach results in higher testing power compared with that

obtained using real data, leading to higher agency’s risk

of accepting defective material. For HMA pavement, the

simulated testing power matches the real one.

N The discrepancy between the simulated testing power and

real one may be caused by three reasons. First, most

populations are not exactly normal distributed, which

violates the normality assumption in the numerical M-

method. Second, samples from one sublot are correlated,
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Figure 9.11 Comparison of testing power between sampling version and subsampling version.

against the independence assumption in the random
sampling. Third, the testing power is computed using
limited lots of the project, which may result in high
variability compared with simulation approach which
considers thousands of lots to compute the testing power.

N The simulated testing power for soil compaction aligns
well with the real one when the defective rate of the area
is relatively high. However, the existence of spatial auto-
correlation has a negative impact on the testing power
when the defective rate is low, leading to higher risk for
the agency. It is recommended to adopt the spatial
indices developed in Section 4.3 to mitigate the impact by
avoiding the spatial clustering of random samples.

N Making acceptance decision based on merged population
leads to compromised testing power when the quality of
two populations are different. If the quality of two lots
are both acceptance or rejectable, the merged lot does not
have a significant influence on the acceptance decision.

N Averaging the samples in one sublot and treating it as the
new sample leads to higher probability of rejecting the
pavement. It ensures the reliability of acceptance testing
when the samples are highly correlated.

10. IMPLEMENTATION

For practical implementation, a web tool that incor-
porates the newly created methods in this study has
been developed based on R Shiny. It is an effective tool
to facilitate the pavement and soil QA practice for the
INDOT engineers with the capability to select random
samples, control agency’s risk in accepting defec-
tive materials, and determine optimal sample sizes for
both pavement and soil acceptance testing. The web
tool consists of 7 separate tabs which corresponds to

different tasks in this study. Table 10.1 describes the
function of each tab and connects them to the chapters
where the corresponding methods are introduced. This
chapter demonstrates the use of the developed web tool,
including the inputs and outputs for each tab.

10.1 Tab 1: Point Pattern Analysis—Pavement

Tab 1 assists the random sampling process and
measures the spatial patterns of sample locations in
pavement acceptance testing. It generates and visualizes
sample locations, and compute the spatial indices of the
generated random locations. Figure 10.1 illustrates the
user interface, which contains four compartments: user
inputs, resulting sample locations, location visualiza-
tion, and spatial indices.

Figure 10.2 illustrates the user inputs, including basic
information on the pavement (lot width, length of each
sublot, and the start station of the pavement) and the
specification regarding the random sampling (sample
size per sublot and the minimum distance to the edge).

Figure 10.3 illustrates the outputs of Tab 1. Speci-
fically, Figure 10.3a illustrates the sample locations
including the longitudinal location and the offset, which
are determined based on the random numbers gener-
ated from uniform distribution. The random locations
are converted to station numbers given the specific start
station to better facilitate the field practice. Figure 10.3b
illustrates the spatial indices of generated random
locations. Note that the reference range of spatial indices
are listed for users to avoid the spatial clustering and high
variability of the random samples, and its rationale is

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/08 35



TABLE 10.1
Description of the web tool.

Tab Tab heading Function

Corresponding

chapter

Tab 1

Tab 2

Tab 3

Tab 4

Tab 5

Tab 6

Tab 7

Point spatial pattern

analysis—pavement

Point spatial pattern

analysis—soil

Testing power—pavement

Confidence interval

Testing power—soil

Optimal sample size

Cost/benefit

Generate random samples

Visualize sample locations

Evaluate sample spatial pattern (for HMA and PCCP)

Generate random samples

Visualize sample locations

Evaluate sample spatial pattern (for soil)

Compare testing power of numerical M-method, Spk-method, and current

practice (PWL for HMA pavement and mean value for PCCP pavement),

given a specific testing strategy

Compute the confidence interval of PWL

Calculate testing power for different sample sizes

Determine the optimal sample size for soil acceptance testing

Determine the optimal sample size given a desired risk level for pavement

acceptance testing

Determine the optimal sample size based on cost-benefit approach for

pavement acceptance testing

Chapter 3 and 4

Chapter 3 and 4

Chapter 5

Chapter 5

Chapter 5 and 6

Chapter 6

Chapter 7

Figure 10.1 User interface of Tab 1.

detailed in Section 4.3. Figure 10.3c depicts the spread of
the random samples throughout the pavement.

This tab serves as an effective tool for the field engi-
neers to determine the locations for random samples.
The spatial indices are controlled in reference ranges to
avoid clustering and high variability.

10.2 Tab 2: Point Spatial Pattern Analysis—Soil

Tab 2 facilitates the random sampling for soil
acceptance testing, with the same functionality as Tab
1. The only difference is that the random locations for

soil sampling are not taken based on sublots. Instead,
the entire area is divided into subareas with the number
equal to the sample size, and one random sample is
taken for each subarea. Figure 10.4 illustrates the user
interface of Tab 2, which contains four compartments:
user inputs, sample locations, location visualization,
and spatial indices. Figure 10.5 illustrates the user
inputs, including basic information on the construction
area (area length and width) and the specification
regarding the soil random sampling (sample size and
the minimum distance to the edge). The outputs are
identical with Tab 1 (Figure 10.3).
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10.3 Tab 3: Testing Power—Pavement

Tab 3 compares the testing power of pavement
acceptance testing using numerical M-method, Spk-
method, and current practice (PWL for HMA pave-
ment and mean value for PCCP pavement), given a
specific testing strategy. Figure 10.6 illustrates the user
interface of Tab 3, which contains three compartments:
user inputs, definition, and comparison of testing
power.

Figure 10.7 illustrates the user inputs of Tab 3, inclu-
ding pavement type (i.e., HMA or PCCP), specification
limit type (i.e., double specification limits or single
specification limit) and the corresponding specification
limit(s), sample size per lot, estimated standard devia-
tion of the pavement, agency’s risk level and the
rejectable defective percentage (RQL). Note that the
difference between two types of pavement is that in
current practice at INDOT, PWL is used as statisticalFigure 10.2 User inputs of Tab 1.

Figure 10.3 Outputs of Tab 1.
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Figure 10.4 User interface of Tab 2.

Figure 10.5 User inputs of Tab 2.

measure for HMA pavement, while mean value serves
as statistical measure for PCCP pavement. Regarding
the specification type, double specification limits means
that both USL and LSL are specified for the specific
property characteristic (e.g., air voids), whereas single
specification limit means that either USL or LSL is
specified for the given property characteristic (e.g.,
flexural strength). The compartment of definition
explains three important terms, i.e., testing power,
agency’s risk level, and rejectable quality level. It is
provided before users submit the task so that they can
refer to the definitions to determine their inputs.

Figure 10.8 illustrates the output of Tab 3. The ‘‘case
study’’ section converts the numerical inputs regarding
the testing strategy into text explanation so that users

can ensure the consistency of their inputs with the
desired strategy. The chart plots the testing power
obtained using numerical M-method, Spk-method, and
current PWL method given the specific testing strategy,
which proves that the proposed method can control the
agency’s risk at the desired level. The ‘‘conclusion’’
section summarizes main findings from the chart so
that users can quickly check for the testing power at the
boundary of acceptable and rejectable quality.

10.4 Tab 4: Confidence Interval

Tab 4 computes the 90% confidence interval of
population PWL given specific sample measurements.
Figure 10.9 illustrates the user interface, which contains
two compartments: user inputs and output confidence
interval. The user inputs include specification limit type
and the corresponding specification limit(s), and the
value of each sample. Once the task is submitted, the
platform computes the PWL from the input sample
values based on the current practice and the 90%

confidence interval based on the proposed numerical
M-method. The 90% confidence interval indicates the
probability of the population PWL falling in the
interval is 90%. This tab proves that it is not reliable
for the current practice to rely on the sample PWL to
make acceptance decision as it is a random variable.
The users can have a better understanding of the
sampling randomness by referring to the confidence
interval.

10.5 Tab 5: Testing Power-Soil

Tab 5 computes the testing power of soil acceptance
testing for different sample sizes and allows the users to
determine the optimal sample size for soil acceptance
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Figure 10.6 User interface of Tab 3.

Figure 10.7 User inputs of Tab 3.

testing. Figure 10.10 illustrates the user interface, which
contains two compartments: user inputs, and the out-
put of testing power for various samples. The only
inputs are the minimum and maximum sample size that
the user would like to consider. The probability of defect-
ing defective area, or the testing power, with respect to
defective rate (varying from 0% to 100%) is plotted for
various sample sizes that are within the range of inputs.
The users can assess its risk (i.e., 1 – testing power) for

a specific sample size, as well as determine an optimal
sample size given a specific desired risk level (explained
in Section 6.3).

10.6 Tab 6: Optimal Sample Size

Tab 6 computes the agency’s risk for different sample
sizes and allows users to determine the optimal sample
size according to their desired risk level in pavement
acceptance testing. Figure 10.11 illustrates the user
interface, which contains three compartments: user
inputs, output table of agency’s risk, and output charts
of agency’s risk.

Figure 10.12 illustrates the user inputs, including speci-
fication limit type and corresponding limits, number of
sublot, estimated standard deviation, RQL, AQL, and
contractor’s risk. Note that users can input at most
three combinations of RQL, AQL, and contractor’s
risk to compare the optimal sample size under different
scenarios.

Figure 10.13 illustrates the output table, where
agency’s risk for different sample sizes computed using
both numerical M-method and Spk-method, given the
three combinations of RQL, AQL, and contractor’s
risk. Figure 10.14 plots the agency’s risk for each sce-
nario. Referring to the computed values of agency’s
risk, the user can choose the smallest sample size that
achieve agency’s desired risk as the optimal sample size.
The three charts can be cross-compared to evaluate the
optimal sample size for different settings of parameters.

10.7 Tab 7: Cost/Benefit

Tab 7 computes the total cost of pavement accep-
tance testing for different sample sizes based on the
two cost analysis approaches proposed in Chapter 7.
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It helps the users to determine the optimal sample size
that minimizes the total cost. Figure 10.15 illustrates
the user interface, which contains three compartments:
user inputs, output table of total cost and agency’s risk
with respect to sample size, and the output chart of
total cost with respect to sample size.

Figure 10.16 illustrates the user inputs, including the
information related to the testing strategy, such as

specification limit type and corresponding limits, RQL,
AQL, and contractor’s risk, as well as basis information
of the pavement, i.e., number of sublot, estimated mean
value and standard deviation, proportion of prior lots
of rejectable quality, unit price, and lot size. The user
also needs to estimate the cost information, such as the
testing cost and cost impact coefficient of the defective
rate, which can be obtained from expert knowledge.

Figure 10.8 Outputs of Tab 3.

Figure 10.9 User interface of Tab 4.
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The meanings of each input and their function in the cost
computation are explained in Section 7.1. Once the user
confirms the approach they would like to use, either
Approach 1 or Approach 2, the web tool will auto-
matically disable the inputs that is not required for the
selected approach. Note that, for Approach, since the
pay factor is computed using different formulas or tables
for different property characteristics, this web tool only
applies air voids of HMA pavement as an example.

Figure 10.17 illustrates the outputs of the Tab 7. The
agency’s risk and corresponding total cost for varying
sample sizes are listed in the output table and the total
cost is also plotted in the output chart. The users can
evaluate their total cost for any sample size from the
output and determine the optimal sample size by
minimizing the total size. After finishing the analysis,
the user needs to reset the tool to do another round of
analysis.

Figure 10.10 User interface of Tab 5.
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Figure 10.11 User interface of Tab 6.
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Figure 10.12 User inputs of Tab 6.
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Figure 10.13 Output table of Tab 6.

Figure 10.14 Output charts of Tab 6.
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Figure 10.15 User interface of Tab 7.

Figure 10.16 User inputs of Tab 7.
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Figure 10.17 Outputs of Tab 7.

11. SUMMARY AND RECOMMENDATIONS

11.1 Summary

This study addresses four critical aspects of pave-
ment and soil acceptance testing, i.e., identifying key
acceptable quality characteristics (AQCs), selecting sam-
ple locations, designing a risk-based acceptance criteria,
and determining optimal sample size. Material proper-
ties that are tested in current INDOT practice were
compared with material properties that are critical to
the pavement long-term performance according to
MEPDG, and the missing items were identified and
analyzed. The pavement property was proved to be spa-
tially auto correlated, and two spatial pattern indices
were proposed to evaluate and control the spatial pattern
of random samples in order to ensure the effectiveness
and reliability of random sampling with the existence of
spatial autocorrelation of pavement properties. Two sta-
tistical methods: numerical M-method and Spk-method,
were proposed to control the agency’s risk in accepting
defective materials in pavement acceptance testing
given a specific testing strategy, and a simulation app-
roach was developed to measure the agency’s risk in soil
acceptance testing. Then, the above methods were incor-
porated to determine the optimal sample size for both
pavement and soil acceptance testing given a desired risk
level. Furthermore, two cost analysis approaches were
developed to determine the optimal sample size by inte-
grating total cost of acceptance testing and the agency’s
risk. Additionally, QC chart was studied as a comple-
mentary tool to ensure the consistency of the pavement
quality of a project. Finally, a web tool that incorporates
the newly created methods in this study was developed to
assist the field practice of QA acceptance testing.

11.2 Findings and Recommendations

Key findings and recommendations have been sum-
marized in the Executive Summary section and are
repeated as follows.

1. Findings and recommendations related to key material

properties.

N There are 10 hot mix asphalt (HMA) properties, 10

Portland cement concrete pavement (PCCP) proper-

ties, and 9 soil properties that are very important to

the pavement performance, among which 5 in HMA,

4 in PCCP, and 6 in soil are not tested in the current

INDOT practice. For the missing items in PCCP and

HMA pavement, most of them do not have certified

testing standards or are difficult and not warranted

in laboratory testing and can be substituted by

default design value. For the missing items in soil,

most of them are neglected in the current INDOT

specification.

N It is recommended that (1) HMA thickness should

be tested and measured directly rather than being

estimated, considering its effect on pavement perfor-

mance, and (2) a sampling and testing protocol shall

be established for key material properties of soil that

are currently not tested.

2. Findings and recommendations related to random

sampling.

N ITM 802-based sampling leads to ‘‘gaps’’—areas that

will never be tested due to the limited random

numbers in the published table. For earthwork, gap

areas can receive insufficient compaction without

being caught. For pavement, although gap areas are

not large enough to accommodate a whole truck-

load, they lead to lower probabilities for certain
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trucks to be tested, compared with the true random
sampling process. Such discrepancy results in a lower
risk for contractors to manipulate these trucks, and a
higher risk for INDOT to accept inferior materials.
Therefore, the ITM 802-based sampling is less reli-
able than the true random sampling with random
number generated from uniform distribution in real
time.

N The material properties are spatially auto-correlated.
Therefore, sample spatial pattern needs to be evalu-
ated and controlled to avoid spatial clustering and
ensure the effectiveness of random sampling. Two
spatial pattern indices, i.e., NNI and CV, are
proposed to evaluate the spatial pattern of sample
locations. NNI assesses the degree of spatial disper-
sion and is recommended to serve as the primary
metrics. CV measures the variability of sample
locations and is recommended to serve the secondary
metrics.

N It is recommended to use a real-time random number
generator to determine sample locations, and the
spatial pattern indices of random samples should
be constrained to ensure the sample locations are
spatially distributed and truly representative of the
population.

3. Findings and recommendations related to acceptance
criteria.

N The current acceptance testing methods at INDOT
do not achieve the desired level of risk control.

N For pavement acceptance, the newly proposed
numerical M-method and Spk-method incorporate
sample variance and treat statistical measures of
samples as random variables. They are capable of
controlling the risk at a desired level and achieving
higher testing power compared to the current
practice at INDOT. The numerical M-method is
suitable for all scenarios and is recommended to
replace the current practice, while Spk-method can be
applied when the sample size is relatively large to
simplify the computation.

N For the soil compaction acceptance, a simulation
approach is proposed to assess the risk of INDOT.
It is recommended to conduct the simulation to
examine the risk once a sampling strategy is deter-
mined, and then make corresponding adjustment on
the sampling strategy according to the desired risk.

N Out-of-control conditions in the pavement project
can be identified by matching the QC chart estab-
lished from pavement QA data with typical abnor-
mal patterns. The QC chart and the numerical M-
method complement each other to ensure the quality
of both individual lot and the entire project, which
cannot be achieved only using current practice.

4. Findings and recommendations related to optimal sam-
ple size.

N The optimal sample size for pavement acceptance
testing can be determined to satisfy the risk expecta-
tion of both agency and contractor using proposed
numerical M-method and Spk-method. The optimal
sample size for soil acceptance can be determined as
the smallest value that satisfies the desired risk level
of agency using proposed simulation approach.

N In addition to the risk perspective, the optimal

sample size for pavement acceptance testing can be

determined using proposed two cost analysis meth-
ods by minimizing the total cost of acceptance

testing. The optimal sample size and the correspond-

ing minimal total cost are sensitive to the values of
the input parameters and therefore, it is very impor-

tant to objectively estimate the input parameters

using historical records.

N In the case studies, the optimal sample size is larger

than the specification requirements. As such, it is

expected that an appropriate increase of the sample
size will reduce the risk to INDOT.

11.3 Validation and Implementation

The newly developed methods in this study have
been validated using real data from different INDOT
projects, including PCCP project, HMA project, and
soil compaction project. In general, the results of simu-
lation study align with those obtained using real data.
The discrepancy mainly stems from the correlation
of samples, the spatial autocorrelation of the mate-
rial property and the non-normality of the population,
which is biased from the normality and independence
assumption in the random sampling and acceptance
testing and deserves more research efforts in the future.

For practical implementation, a web tool that incor-
porates the newly created methods in this study has
been developed based on R Shiny. It is an effective tool
to facilitate the pavement and soil QA practice for the
INDOT engineers with the capability to select random
samples, control agency’s risk, and determine optimal
sample sizes for both pavement and soil acceptance
testing.

A phased implementation is suggested as follows:

1. Set up R Shiny website to implement the web tool.

2. Tool rollout and pilot testing by phases.

N Phase I: field crew adopt the random number generator
tool to locate sample location,

N Phase II: field crew and material engineers use the risk

assessment tool to determine the probability of accepting
inferior products given the testing results.

N Phase III: engineers use the web tool to determine the

optimal sample size.

A clear understanding of the technical principles and
a set of skills are necessary to use the web tool and
interpret the results. As such, training for INDOT staff
is recommended.
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